Applied Algebra, MAT312/AMS351 Practice Problems for the Final: Solutions

(1) Find the greatest common divisor of 12n + 1 and 30n + 2.

Solution: Using the Euclidean algorithm, we find that

gcd(30n + 2, 12n + 1) = gcd(12n + 1, 6n) = gcd(6n, 1) = 1.

(2) Prove that the product of three consecutive natural numbers is always divisible by 6.

Solution: If the first of the three integers is even, then the product is even. If it is odd, then the second of the three integers is even; thus the product is even in any case. A similar argument using the possible congruence classes of the first integer modulo 3 shows that the product is divisible by 3. Since 2 and 3 are relatively prime, the result follows by unique factorization of primes.

- (3) Solve the following linear congruences
 - (a) $26x \equiv 8 \mod 44;$
 - (b) $24x \equiv 9 \mod 40$.

Solution: (a) Since the greatest common divisor of 26 and 44 is 2, which divides 8, this congruence—which is equivalent to $13x \equiv 4 \mod 22$ —has a solution, namely $x = [13]_{22}^{-1}[4]_{22}$. Computing $[13]_{22}^{-1}$ by either running the Euclidean algorithm backwards or by the matrix method, we find $[13]_{22}^{-1} = [-5]_{22}$. Thus $x = [2]_{22}$.

(b) Since the greatest common divisor of 40 and 24 (i.e. 8) does not divide 9, this congruence has no solution.

(4) Solve the following system of linear congruences:

$$\begin{cases} x \equiv 4 \mod 25\\ 3x \equiv 6 \mod 39 \end{cases}$$

Solution: This is equivalent to the system

$$\begin{cases} x \equiv 4 \mod 25\\ x \equiv 2 \mod 13 \end{cases}$$

which, by the Chinese Remainder Theorem, has a solution. Since $25 \cdot (-1) + 13 \cdot (2) = 1$, the solution is $x \equiv (4 \cdot 13 \cdot 2) + (2 \cdot 25 \cdot (-1)) = 54 \mod 325$.

(5) Show that the equation $5x^7 - x^4 = 23$ has no integer solutions.

Solution: If we reduce this equation mod 2, it becomes $x^7 + x^4 \equiv 1 \mod 2$, which has no solution (direct check for all cogruence classes mod 2).

(6) Recall that the Fibonacci sequence is defined as $F_1 = 1, F_2 = 1$, and then for every $n > 2, F_n = F_{n-1} + F_{n-2}$. Prove that for every $n, F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1$.

Solution: We proceed by induction on n. When n = 1, the assertion amounts to $F_2 = F_3 - 1$; since $F_1 = 1$, this is immediate from the definition of the Fibonacci sequence. Now assume that it is true for k. We then have

$$F_2 + F_4 + \dots + F_{2(k+1)} = (F_2 + F_4 + \dots + F_{2k}) + F_{2k+2}$$
$$= (F_{2k+1} - 1) + F_{2k+2}$$
$$= F_{2k+3} - 1 = F_{2(k+1)+1} - 1.$$

(7) Find the last two digits of the number 3333^{4444} .

Solution: Since 3333 is relatively prime to 100, we may use Euler's Theorem. We have that $\phi(100) = 40$ and $3333 \equiv 33 \mod 100$, so $3333^{4444} \equiv 33^4 = 3^4 \cdot 11^4 = 81 \cdot 121 \cdot 121 \equiv 81 \cdot 21 \cdot 21 \equiv 1701 \cdot 21 \equiv 1 \cdot 21 = 21 \mod 100$.

(8) Let G be a group and $C = \{a \in G : ax = xa \text{ for all } x \in G\}$. Prove that C is a subgroup of G.

Solution: It suffices to show that for all $a, b \in C$, $ab \in C$ and $a^{-1} \in C$. Let $a, b \in C$ and x be any element of G. Then (ab)x = a(bx) = (bx)a = (xb)a = x(ba) = x(ab). Also, since a commutes with every element of G, it commutes with x^{-1} in particular, i.e. $ax^{-1} = x^{-1}a$. Taking inverses of both sides gives $xa^{-1} = a^{-1}x$.

(9) Let R be a relation on \mathbb{Q}^{\times} (nonzero rational numbers) defined by:

aRb if and only if ab is a square of a rational number.

Prove that R is an equivalence relation.

Solution: (Reflexivity) For all $a \in \mathbb{Q}^{\times}$, $aa = a^2$. (Symmetry) Observe that multiplication of rationals is commutative. (Transitivity) Let $a, b, c, q, r \in \mathbb{Q}^{\times}$ be such that $ab = q^2$ and $bc = r^2$. Then $(qrb^{-1})^2 = (ab)(bc)(b^{-2}) = ac$.

(10) Let
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 1 & 6 & 7 & 4 & 2 \end{pmatrix}$$
.

- (a) Compute $(145)\pi$.
- (b) Determine the order of π .
- (c) Determine the sign of π .

Solution: First note that π may be written in cycle notation as (13)(46)(257). (a) $(145)\pi = (145)(13)(46)(257) = (1346572)$.

(b) $o(\pi) = \text{lcm}(o((13)), o((46)), o((257))) = 6$ (this works since the cycles in question are disjoint).

(c) $\operatorname{sign}(\pi) = \operatorname{sign}((13)) \cdot \operatorname{sign}((46)) \cdot \operatorname{sign}((257)) = 1$. (Alternative solution: count inversions in π .)

(11) (a) What is the order of the group S(4)?

- (b) What are the possible orders of elements in a group of order 24?
- (c) What are the possible orders of permutations in the group S(4)?

Solution: (a) The order of S(4) is 4! = 24. (b) By Lagrange's Theorem, the only possible orders of an element in a group of order 24 are 1,2,3,4,6,8,12, and 24. (c) An element of S(4) which is not the identity can be written as either a 2-cycle, a 3-cycle, a 4-cycle, or a product of two

disjoint 2-cycles. Thus the possible orders of an element of S(4) are 1,2,3, and 4.

(12) Let a, b, c be elements of some group G. Solve the equation (ax)(bc) = e in G. Justify every step.

Solution: $(ax)(bc) = e \Rightarrow ax = (bc)^{-1}$ (existence of inverses) $\Rightarrow ax = c^{-1}b^{-1}$ (by the formula for the inverse of the product) $\Rightarrow x = a^{-1}c^{-1}b^{-1}$ (can drop parentheses by associativity).

- (13) (a) Let H be the subgroup of G_{15} generated by $[4]_{15}$. List all elements of H.
 - (b) List all cosets of H in G_{15} .
 - **Solution:** (a) Since $([4]_{15})^2 = [1]_{15}$, $H = \{[1]_{15}, [4]_{15}\}$. (b) The cosets are
 - $H = \{ [1]_{15}, [4]_{15} \}$ $[2]_{15} \cdot H = \{ [2]_{15}, [8]_{15} \}$ $[7]_{15} \cdot H = \{ [7]_{15}, [13]_{15} \}$ $[11]_{15} \cdot H = \{ [11]_{15}, [14]_{15} \}$
- (14) Let $R = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. Show that R, equipped with ordinary addition and multiplication of real numbers, is a ring. Is R a field?

Solution: To show that R is an additive abelian group, we show that it is a subgroup of the (abelian!) additive group of real numbers. It suffices to check that the difference of any two elements of R is in R. Indeed, given $a + b\sqrt{2}, c + d\sqrt{2} \in R$, $(a + b\sqrt{2}) - (c + d\sqrt{2}) = (a - c) + (b - d)\sqrt{2}$; since $a - c, b - d \in \mathbb{Q}$ we are done.

Then we only need to show that R is closed under multiplication, since associativity of multiplication and distributivity properties are "inherited" from the reals. Indeed, given $a + b\sqrt{2}, c + d\sqrt{2} \in R$, $(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}$. Thus R is a ring as claimed.

Furthermore the multiplication in R is commutative and R contains a unit element $(1 = 1 + 0\sqrt{2})$.

Finally, we show that R is a field, i.e. that R^{\times} is an abelian group. The only group axiom that needs checking is the existence of inverses. If $a+b\sqrt{2}$ is an element of R^{\times} , that is, $a, b \in \mathbb{Q}$ are not both zero, "rationalizing the denominator" tells us that $(a+b\sqrt{2}) \cdot (\frac{a}{a^2-2b^2} + \frac{-b}{a^2-2b^2}\sqrt{2}) = 1$. (Note that this is valid because $\sqrt{2}$ is irrational.)

(15) Let $f : B^3 \to B^5$ be a coding function given by $f(abc) = a\bar{a}b\bar{b}c$, where $\bar{a} = 1$ if a = 0 and $\bar{a} = 0$ if a = 1. What is the minimal distance between two distinct codewords in B^5 ? How many errors can this code detect? How many errors can this code correct?

Solution: Note that f, while not a linear code, is given by first applying the generating matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

and then adding 01010 to the result. For all $v, w \in B^3$, (vA + 01010) - (wA + 01010) = vA - wA, so it suffices to work with the linear code given by A instead. The minimum weight of a nonzero codeword of this linear code is 1 (look at the third row of A), so the minimum distance between distinct codewords of f is also 1. It follows that the code can neither correct nor detect any errors.

(16) Write down the two-column decoding table for the code given by the generator matrix

$$B = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

Use this table to correct the message

4

010101 101010 001101 100101.

Solution: First, we compute the parity-check matrix associated to B. This is

$$H = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We choose the zero vector, all 6 unit vectors (corresponding to rows of H), and 100001 (corresponding to 111 = 110 + 001) to be coset leaders. The table is then

syndrome	coset leader
000	000000
001	000001
010	000010
100	000100
011	001000
101	010000
110	100000
111	100001

The syndrome of 010101 is 000, so it is a codeword. The syndromes of 101010, 001101, and 100101 are 111, 110, and 011, respectively. Adding the appropriate coset leaders gives the "corrected" message

010101 001011 101101 101101.