
Applied Algebra, MAT312/AMS351
Practice Problems for the Final: Solutions

(1) Find the greatest common divisor of 12n + 1 and 30n + 2.

Solution: Using the Euclidean algorithm, we find that

gcd(30n + 2, 12n + 1) = gcd(12n + 1, 6n) = gcd(6n, 1) = 1.

(2) Prove that the product of three consecutive natural numbers is always
divisible by 6.

Solution: If the first of the three integers is even, then the product
is even. If it is odd, then the second of the three integers is even; thus
the product is even in any case. A similar argument using the possible
congruence classes of the first integer modulo 3 shows that the product is
divisible by 3. Since 2 and 3 are relatively prime, the result follows by
unique factorization of primes.

(3) Solve the following linear congruences
(a) 26x ≡ 8 mod 44;
(b) 24x ≡ 9 mod 40.

Solution: (a) Since the greatest common divisor of 26 and 44 is 2, which
divides 8, this congruence–which is equivalent to 13x ≡ 4 mod 22–has a
solution, namely x = [13]−1

22 [4]22. Computing [13]−1
22 by either running the

Euclidean algortihm backwards or by the matrix method, we find [13]−1
22 =

[−5]22. Thus x = [2]22.
(b) Since the greatest common divisor of 40 and 24 (i.e. 8) does not

divide 9, this congruence has no solution.

(4) Solve the following system of linear congruences:{
x ≡ 4 mod 25
3x ≡ 6 mod 39

Solution: This is equivalent to the system{
x ≡ 4 mod 25
x ≡ 2 mod 13

which, by the Chinese Remainder Theorem, has a solution. Since 25·(−1)+
13 · (2) = 1, the solution is x ≡ (4 · 13 · 2) + (2 · 25 · (−1)) = 54 mod 325.

(5) Show that the equation 5x7 − x4 = 23 has no integer solutions.

Solution: If we reduce this equation mod 2, it becomes x7 + x4 ≡ 1
mod 2, which has no solution (direct check for all cogruence classes mod
2).

(6) Recall that the Fibonacci sequence is defined as F1 = 1, F2 = 1, and then for
every n > 2, Fn = Fn−1+Fn−2. Prove that for every n, F2+F4+· · ·+F2n =
F2n+1 − 1.
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Solution: We proceed by induction on n. When n = 1, the assertion
amounts to F2 = F3−1; since F1 = 1, this is immediate from the definition
of the Fibonacci sequence. Now assume that it is true for k. We then have

F2 + F4 + · · ·+ F2(k+1) =(F2 + F4 + · · ·+ F2k) + F2k+2

=(F2k+1 − 1) + F2k+2

=F2k+3 − 1 = F2(k+1)+1 − 1.

(7) Find the last two digits of the number 33334444.

Solution: Since 3333 is relatively prime to 100, we may use Euler’s The-
orem. We have that φ(100) = 40 and 3333 ≡ 33 mod 100, so 33334444 ≡
334 = 34 ·114 = 81 ·121 ·121 ≡ 81 ·21 ·21 ≡ 1701 ·21 ≡ 1 ·21 = 21 mod 100.

(8) Let G be a group and C = {a ∈ G : ax = xa for all x ∈ G}. Prove that C
is a subgroup of G.

Solution: It suffices to show that for all a, b ∈ C, ab ∈ C and a−1 ∈ C.
Let a, b ∈ C and x be any element of G. Then (ab)x = a(bx) = (bx)a =
(xb)a = x(ba) = x(ab). Also, since a commutes with every element of G,
it commutes with x−1 in particular, i.e. ax−1 = x−1a. Taking inverses of
both sides gives xa−1 = a−1x.

(9) Let R be a relation on Q× (nonzero rational numbers) defined by:

aRb if and only if ab is a square of a rational number.

Prove that R is an equivalence relation.

Solution: (Reflexivity) For all a ∈ Q×, aa = a2. (Symmetry) Ob-
serve that multiplication of rationals is commutative. (Transitivity) Let
a, b, c, q, r ∈ Q× be such that ab = q2 and bc = r2. Then (qrb−1)2 =
(ab)(bc)(b−2) = ac.

(10) Let π =
(

1 2 3 4 5 6 7
3 5 1 6 7 4 2

)
.

(a) Compute (145)π.
(b) Determine the order of π.
(c) Determine the sign of π.

Solution: First note that π may be written in cycle notation as (13)(46)(257).
(a) (145)π = (145)(13)(46)(257) = (1346572).
(b) o(π) = lcm(o((13)), o((46)), o((257))) = 6 (this works since the cycles

in question are disjoint).
(c) sign(π) = sign((13)) · sign((46)) · sign((257)) = 1. (Alternative solu-

tion: count inverstions in π.)

(11) (a) What is the order of the group S(4)?
(b) What are the possible orders of elements in a group of order 24?
(c) What are the possible orders of permutations in the group S(4)?

Solution: (a) The order of S(4) is 4! = 24. (b) By Lagrange’s The-
orem, the only possible orders of an element in a group of order 24 are
1,2,3,4,6,8,12, and 24. (c) An element of S(4) which is not the identity
can be written as either a 2-cycle, a 3-cycle, a 4-cycle, or a product of two
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disjoint 2-cycles. Thus the possible orders of an element of S(4) are 1,2,3,
and 4.

(12) Let a, b, c be elements of some group G. Solve the equation (ax)(bc) = e in
G. Justify every step.

Solution: (ax)(bc) = e ⇒ ax = (bc)−1 (existence of inverses) ⇒ ax =
c−1b−1 (by the formula for the inverse of the product) ⇒ x = a−1c−1b−1

(can drop parentheses by associativity) .

(13) (a) Let H be the subgroup of G15 generated by [4]15. List all elements
of H.

(b) List all cosets of H in G15.

Solution: (a) Since ([4]15)2 = [1]15, H = {[1]15, [4]15}.
(b) The cosets are

H = {[1]15, [4]15}
[2]15 ·H = {[2]15, [8]15}
[7]15 ·H = {[7]15, [13]15}

[11]15 ·H = {[11]15, [14]15}

(14) Let R = {a + b
√

2 : a, b ∈ Q}. Show that R, equipped with ordinary
addition and multiplication of real numbers, is a ring . Is R a field?

Solution: To show that R is an additive abelian group, we show that it
is a subgroup of the (abelian!) additive group of real numbers. It suffices
to check that the difference of any two elements of R is in R. Indeed, given
a + b

√
2, c + d

√
2 ∈ R, (a + b

√
2)− (c + d

√
2) = (a− c) + (b− d)

√
2; since

a− c, b− d ∈ Q we are done.
Then we only need to show that R is closed under multiplication, since

associativity of multiplication and distributivity properties are “inherited”
from the reals. Indeed, given a+ b

√
2, c+d

√
2 ∈ R, (a+ b

√
2) · (c+d

√
2) =

(ac + 2bd) + (ad + bc)
√

2. Thus R is a ring as claimed.
Furthermore the multiplication in R is commutative and R contains a

unit element (1 = 1 + 0
√

2).
Finally, we show that R is a field, i.e. that R× is an abelian group. The

only group axiom that needs checking is the existence of inverses. If a+b
√

2
is an element of R×, that is, a, b ∈ Q are not both zero, “rationalizing the
denominator” tells us that (a + b

√
2) · ( a

a2−2b2 + −b
a2−2b2

√
2) = 1. (Note that

this is valid because
√

2 is irrational.)

(15) Let f : B3 → B5 be a coding function given by f(abc) = aābb̄c, where
ā = 1 if a = 0 and ā = 0 if a = 1. What is the minimal distance between
two distinct codewords in B5? How many errors can this code detect? How
many errors can this code correct?

Solution: Note that f, while not a linear code, is given by first applying
the generating matrix

A =

1 1 0 0 0
0 0 1 1 0
0 0 0 0 1


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and then adding 01010 to the result. For all v, w ∈ B3, (vA + 01010) −
(wA+01010) = vA−wA, so it suffices to work with the linear code given by
A instead. The minimum weight of a nonzero codeword of this linear code
is 1 (look at the third row of A), so the minimum distance between distinct
codewords of f is also 1. It follows that the code can neither correct nor
detect any errors.

(16) Write down the two-column decoding table for the code given by the gen-
erator matrix

B =

1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .

Use this table to correct the message

010101 101010 001101 100101.

Solution: First, we compute the parity-check matrix associated to B.
This is

H =


1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1


We choose the zero vector, all 6 unit vectors (corresponding to rows of H),
and 100001 (corresponding to 111 = 110 + 001) to be coset leaders. The
table is then

syndrome coset leader
000 000000
001 000001
010 000010
100 000100
011 001000
101 010000
110 100000
111 100001

The syndrome of 010101 is 000, so it is a codeword. The syndromes of
101010, 001101, and 100101 are 111, 110, and 011, respectively. Adding
the appropriate coset leaders gives the “corrected” message

010101 001011 101101 101101.


