Applied Algebra, MAT312/AMS351 Practice Problems for Midterm II: Solutions

1. Let $R = \{(a, b) \mid a \equiv b \mod 5\}$ be a subset of $\mathbb{Z} \times \mathbb{Z}$. Prove or disprove that aRb is an equivalence relation on \mathbb{Z} .

Solution: R is reflexive: $a \equiv a \mod 5$ because $5|(a-a) \cdot R$ is symmetric: if $a \equiv b \mod 5$, i.e. 5|(a-b), then 5|(b-a), i.e. $b \equiv a \mod 5$. R is transitive: if $a \equiv b \mod 5$ and $b \equiv c \mod 5$, i.e. 5 divides a-b and b-c, then 5|(a-c), i.e. $a \equiv c \mod 5$. Therefore, R is an equivalence relation.

2. Let $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5 \end{pmatrix}$ and $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 1 & 4 & 2 & 7 \end{pmatrix}$. Compute $\pi\sigma$, π^{-1} . Determine orders and signs of π and σ . Solution: $\pi\sigma =$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 1 & 4 & 2 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 3 & 4 & 7 & 6 & 5 \end{pmatrix}.$$
$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 5 & 1 & 7 & 2 & 4 \end{pmatrix}.$$
$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5 \end{pmatrix} = (1475326), \text{ order}=7.$$
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 1 & 4 & 2 & 7 \end{pmatrix} = (1354)(26), \text{ order}=\operatorname{lcm}(4,2) = 4.$$

Inversions in π : (4, 1), (6, 1), (2, 1), (7, 1), (3, 1), (4, 2), (6, 2), (4, 3), (6, 3), (7, 3), (6, 5), (7, 5). 12 inversions, thus sign(π) = $(-1)^{12} = 1$.

Inversions in σ : (3, 1), (6, 1), (5, 1), (3, 2), (6, 2), (5, 2), (4, 2), (6, 4), (5, 4), (6, 5). 10 inversions, thus sign $(\sigma) = (-1)^{10} = 1$.

3. Prove that for any permutation π , the permutation $\pi^{-1}(12)\pi$ is a transposition.

Solution: Let k, l be such that $\pi(k) = 1, \pi(l) = 2$. Then $\pi^{-1}(1) = k, \pi^{-1}(2) = l$, so that $\pi^{-1}(12)\pi(k) = l$ and $\pi^{-1}(12)\pi(l) = k$, i.e. $\pi^{-1}(12)\pi$ permutes k and l. Now let m be any number distinct from k and l. Since $m \neq k, l, \pi(m) \neq 1, 2$ and the transposition (12) leaves $\pi(m)$ in place. Therefore, $\pi^{-1}(12)\pi(m) = \pi^{-1}(\pi(m)) = m$. Hence, $\pi^{-1}(12)\pi$ leaves $m \neq k, l$ in place. We conclude that $\pi^{-1}(12)\pi = (kl)$, a transposition.

4. Let a, b be elements of a group G. Solve equations $a^{-1}x = b$ and $xa^{-1}b = e$. Solution: $a^{-1}x = b$: multiply by a on the left: $aa^{-1}x = ab$. Thus x = ab.

 $xa^{-1}b = e$: multiply by $b^{-1}a$ on the right: $xa^{-1}bb^{-1}a = eb^{-1}a$. Thus $x = eb^{-1}a = b^{-1}a$.

5. Let G be a group such that for any two elements a, b in G, $(ab)^2 = a^2b^2$. Prove that G is abelian.

Solution: $(ab)^2 = a^2b^2$ means abab = aabb. Multiply by a^{-1} on the left and b^{-1} on the right: $a^{-1}ababb^{-1} = a^{-1}aabbb^{-1}$. Cancelling $a^{-1}a$ etc gives ba = ab for all a, b. This means that G is abelian.

6. Let G be a group. Define the relation of *conjugacy* on G: aRb if and only if there exists $g \in G$ such that $b = g^{-1}ag$. Prove that this is an equivalence relation.

Solution: R is reflexive: aRa because $e^{-1}ae = a$. R is symmetric: if aRb, i.e. if $b = g^{-1}ag$ for some g, then $a = gbg^{-1} = (g^{-1})^{-1}bg^{-1}$ and bRa. R is transitive: if aRb, i.e. $b = g^{-1}ag$, and bRc, i.e. $c = h^{-1}bh$, then $c = h^{-1}g^{-1}agh = (gh)^{-1}a(gh)$

and aRc. (Notice that the definition of relation requires that $b = g^{-1}ag$ for some g, i.e. for different pairs of a and b, g may be different.)

7. Compute orders of the following elements of the group $(\mathbb{C}^{\times}, \cdot)$: $3i, \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$. **Solution:** $(3i)^n = 3^n i^n$. Since $|3^n i^n| = 3^n$ (or, equivalently, since $3^n i^n$ equals either of $3^n, -3^n, 3^n i, -3^n i$, $(3i)^n \neq 1$ for any n. Hence 3i has infinite order.

Taking subsequent powers of $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ shows that $\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^8 = 1$. Alterna-

tively, you can just compute $\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^8 = i$ and take it from there.

8. For a matrix A denote its transpose by A^t . A is orthogonal if $A^{-1} = A^t$ (A^t means the transpose of A). Prove that the set of invertible orthogonal $n \times n$ matrices is a subgroup of $GL(n,\mathbb{R})$. (*Hints:* First recall – or deduce – that $(AB)^t = B^t A^t$ and $(A^{-1})^t = (A^t)^{-1}$.)

Solution: We have to prove that (1) if A and B are invertible orthogonal matrices, then so is AB; (2) if A is an invertible orthogonal matrix, then so is A^{-1} .

(1) $(AB)^t = B^t A^t = B^{-1} A^{-1} = (AB)^{-1}.$ (2) $(A^{-1})^t = (A^t)^{-1} = (A^{-1})^{-1}.$

9. Let R be a commutative ring such that 1+1=0. Prove that for any $x, y \in R$, $(x+y)^2 = x^2 + y^2.$

Solution: $(x+y)^2 = (x+y)(x+y) = x^2 + xy + yx + y^2$ (distributive law). Since R is commutative, yx = xy. Since 1 + 1 = 0, xy + xy = (1 + 1)xy = 0xy = 0. Thus $(x+y)^2 = x^2 + 0 + y^2 = x^2 + y^2.$

10. Prove that the subset $\{a + bj | a, b \in \mathbb{R}\}$ of \mathbb{H} is a field.

Solution: Since \mathbb{H} is a unital ring, we only have to prove that every nonzero element of the form a + bj is invertible and that (a + bj)(c + dj) = (c + dj)(a + bj)(commutativity of multiplication).

Invertibility of a + bj: $(a + bj)(a - bj) = a^2 - b^2j^2 = a^2 + b^2$. Therefore, $(a+bj)^{-1} = \frac{a-bj}{a^2+b^2}$

Commutativity of multiplication: $(a + bj)(c + dj) = ac + bcj + adj + bdj^2 =$ $ca + cbj + daj + dbj^2 = (c + dj)(a + bj).$