
Applied Algebra, MAT312/AMS351
Practice Problems for Midterm II: Solutions

1. Let R = {(a, b) | a ≡ b mod 5} be a subset of Z×Z. Prove or disprove that
aRb is an equivalence relation on Z.

Solution: R is reflexive: a ≡ a mod 5 because 5|(a − a) . R is symmetric: if
a ≡ b mod 5, i.e. 5|(a − b), then 5|(b − a), i.e. b ≡ a mod 5. R is transitive: if
a ≡ b mod 5 and b ≡ c mod 5, i.e. 5 divides a− b and b− c, then 5|(a− c), i.e.
a ≡ c mod 5. Therefore, R is an equivalence relation.

2. Let π =
(

1 2 3 4 5 6 7
4 6 2 7 3 1 5

)
and σ =

(
1 2 3 4 5 6 7
3 6 5 1 4 2 7

)
.

Compute πσ, π−1. Determine orders and signs of π and σ.
Solution: πσ =(

1 2 3 4 5 6 7
4 6 2 7 3 1 5

) (
1 2 3 4 5 6 7
3 6 5 1 4 2 7

)
=

(
1 2 3 4 5 6 7
2 1 3 4 7 6 5

)
.

π−1 =
(

1 2 3 4 5 6 7
4 6 2 7 3 1 5

)−1

=
(

1 2 3 4 5 6 7
6 3 5 1 7 2 4

)
.

π =
(

1 2 3 4 5 6 7
4 6 2 7 3 1 5

)
= (1475326), order=7.

σ =
(

1 2 3 4 5 6 7
3 6 5 1 4 2 7

)
= (1354)(26), order=lcm(4, 2) = 4.

Inversions in π: (4, 1), (6, 1), (2, 1), (7, 1), (3, 1), (4, 2), (6, 2), (4, 3), (6, 3), (7, 3),
(6, 5), (7, 5). 12 inversions, thus sign(π) = (−1)12 = 1.

Inversions in σ: (3, 1), (6, 1), (5, 1), (3, 2), (6, 2), (5, 2), (4, 2), (6, 4), (5, 4), (6, 5).
10 inversions, thus sign(σ) = (−1)10 = 1.

3. Prove that for any permutation π, the permutation π−1(12)π is a transposi-
tion.

Solution: Let k, l be such that π(k) = 1, π(l) = 2. Then π−1(1) = k, π−1(2) = l,
so that π−1(12)π(k) = l and π−1(12)π(l) = k, i.e. π−1(12)π permutes k and l. Now
let m be any number distinct from k and l. Since m 6= k, l, π(m) 6= 1, 2 and the
transposition (12) leaves π(m) in place. Therefore, π−1(12)π(m) = π−1(π(m)) =
m. Hence, π−1(12)π leaves m 6= k, l in place. We conclude that π−1(12)π = (kl),
a transposition.

4. Leat a, b be elements of a group G. Solve equations a−1x = b and xa−1b = e.
Solution: a−1x = b: multiply by a on the left: aa−1x = ab. Thus x = ab.
xa−1b = e: multiply by b−1a on the right: xa−1bb−1a = eb−1a. Thus x =

eb−1a = b−1a.
5. Let G be a group such that for any two elements a, b in G, (ab)2 = a2b2.

Prove that G is abelian.
Solution: (ab)2 = a2b2 means abab = aabb. Multiply by a−1 on the left and b−1

on the right: a−1ababb−1 = a−1aabbb−1. Cancelling a−1a etc gives ba = ab for all
a, b. This means that G is abelian.

6. Let G be a group. Define the relation of conjugacy on G: aRb if and only if
there exists g ∈ G such that b = g−1ag. Prove that this is an equivalence relation.

Solution: R is reflexive: aRa because e−1ae = a. R is symmetric: if aRb, i.e. if
b = g−1ag for some g, then a = gbg−1 = (g−1)−1bg−1 and bRa. R is transitive: if
aRb, i.e. b = g−1ag, and bRc, i.e. c = h−1bh, then c = h−1g−1agh = (gh)−1a(gh)
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and aRc. (Notice that the definition of relation requires that b = g−1ag for some
g, i.e. for different pairs of a and b, g may be different.)

7. Compute orders of the following elements of the group (C×, ·): 3i,
√

2
2 +

√
2

2 i.
Solution: (3i)n = 3nin. Since |3nin| = 3n (or, equivalently, since 3nin equals

either of 3n,−3n, 3ni,−3ni), (3i)n 6= 1 for any n. Hence 3i has infinite order.

Taking subsequent powers of
√

2
2 +

√
2

2 i shows that
(√

2
2 +

√
2

2 i
)8

= 1. Alterna-

tively, you can just compute
(√

2
2 +

√
2

2 i
)8

= i and take it from there.

8. For a matrix A denote its transpose by At. A is orthogonal if A−1 = At (At

means the transpose of A). Prove that the set of invertible orthogonal n×n matrices
is a subgroup of GL(n, R). (Hints: First recall – or deduce – that (AB)t = BtAt

and (A−1)t = (At)−1.)
Solution: We have to prove that (1) if A and B are invertible orthogonal ma-

trices, then so is AB; (2) if A is an invertible orthogonal matrix, then so is A−1.
(1) (AB)t = BtAt = B−1A−1 = (AB)−1.
(2) (A−1)t = (At)−1 = (A−1)−1.
9. Let R be a commutative ring such that 1+1 = 0. Prove that for any x, y ∈ R,

(x + y)2 = x2 + y2.
Solution: (x+y)2 = (x+y)(x+y) = x2 +xy +yx+y2 (distributive law). Since

R is commutative, yx = xy. Since 1 + 1 = 0, xy + xy = (1 + 1)xy = 0xy = 0. Thus
(x + y)2 = x2 + 0 + y2 = x2 + y2.

10. Prove that the subset {a + bj|a, b ∈ R} of H is a field.
Solution: Since H is a unital ring, we only have to prove that every nonzero

element of the form a + bj is invertible and that (a + bj)(c + dj) = (c + dj)(a + bj)
(commutativity of multiplication).

Invertibility of a + bj: (a + bj)(a − bj) = a2 − b2j2 = a2 + b2. Therefore,

(a + bj)−1 =
a− bj

a2 + b2
.

Commutativity of multiplication: (a + bj)(c + dj) = ac + bcj + adj + bdj2 =
ca + cbj + daj + dbj2 = (c + dj)(a + bj).


