Applied Algebra, MAT312/AMS351
 Practice Problems for Midterm II: Solutions

1. Let $R=\{(a, b) \mid a \equiv b \bmod 5\}$ be a subset of $\mathbb{Z} \times \mathbb{Z}$. Prove or disprove that $a R b$ is an equivalence relation on \mathbb{Z}.

Solution: R is reflexive: $a \equiv a \bmod 5$ because $5 \mid(a-a) . R$ is symmetric: if $a \equiv b \bmod 5$, i.e. $5 \mid(a-b)$, then $5 \mid(b-a)$, i.e. $b \equiv a \bmod 5 . R$ is transitive: if $a \equiv b \bmod 5$ and $b \equiv c \bmod 5$, i.e. 5 divides $a-b$ and $b-c$, then $5 \mid(a-c)$, i.e. $a \equiv c \bmod 5$. Therefore, R is an equivalence relation.
2. Let $\pi=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 2 & 7 & 3 & 1 & 5\end{array}\right)$ and $\sigma=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 5 & 1 & 4 & 2 & 7\end{array}\right)$.

Compute $\pi \sigma, \pi^{-1}$. Determine orders and signs of π and σ.

$$
\begin{aligned}
& \text { Solution: } \pi \sigma= \\
& \left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 2 & 7 & 3 & 1 & 5
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 6 & 5 & 1 & 4 & 2 & 7
\end{array}\right)=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 1 & 3 & 4 & 7 & 6 & 5
\end{array}\right) . \\
& \pi^{-1}=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 2 & 7 & 3 & 1 & 5
\end{array}\right)^{-1}=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 3 & 5 & 1 & 7 & 2 & 4
\end{array}\right) . \\
& \pi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 6 & 2 & 7 & 3 & 1 & 5
\end{array}\right)=(1475326), \text { order }=7 . \\
& \sigma=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 6 & 5 & 1 & 4 & 2 & 7
\end{array}\right)=(1354)(26), \text { order }=\operatorname{lcm}(4,2)=4 \text {. }
\end{aligned}
$$

Inversions in $\pi:(4,1),(6,1),(2,1),(7,1),(3,1),(4,2),(6,2),(4,3),(6,3),(7,3)$, $(6,5),(7,5) .12$ inversions, thus $\operatorname{sign}(\pi)=(-1)^{12}=1$.

Inversions in $\sigma:(3,1),(6,1),(5,1),(3,2),(6,2),(5,2),(4,2),(6,4),(5,4),(6,5)$. 10 inversions, thus $\operatorname{sign}(\sigma)=(-1)^{10}=1$.
3. Prove that for any permutation π, the permutation $\pi^{-1}(12) \pi$ is a transposition.

Solution: Let k, l be such that $\pi(k)=1, \pi(l)=2$. Then $\pi^{-1}(1)=k, \pi^{-1}(2)=l$, so that $\pi^{-1}(12) \pi(k)=l$ and $\pi^{-1}(12) \pi(l)=k$, i.e. $\pi^{-1}(12) \pi$ permutes k and l. Now let m be any number distinct from k and l. Since $m \neq k, l, \pi(m) \neq 1,2$ and the transposition (12) leaves $\pi(m)$ in place. Therefore, $\pi^{-1}(12) \pi(m)=\pi^{-1}(\pi(m))=$ m. Hence, $\pi^{-1}(12) \pi$ leaves $m \neq k, l$ in place. We conclude that $\pi^{-1}(12) \pi=(k l)$, a transposition.
4. Leat a, b be elements of a group G. Solve equations $a^{-1} x=b$ and $x a^{-1} b=e$.

Solution: $a^{-1} x=b$: multiply by a on the left: $a a^{-1} x=a b$. Thus $x=a b$.
$x a^{-1} b=e$: multiply by $b^{-1} a$ on the right: $x a^{-1} b b^{-1} a=e b^{-1} a$. Thus $x=$ $e b^{-1} a=b^{-1} a$.
5. Let G be a group such that for any two elements a, b in $G,(a b)^{2}=a^{2} b^{2}$. Prove that G is abelian.

Solution: $(a b)^{2}=a^{2} b^{2}$ means $a b a b=a a b b$. Multiply by a^{-1} on the left and b^{-1} on the right: $a^{-1} a b a b b^{-1}=a^{-1} a a b b b^{-1}$. Cancelling $a^{-1} a$ etc gives $b a=a b$ for all a, b. This means that G is abelian.
6. Let G be a group. Define the relation of conjugacy on $G: a R b$ if and only if there exists $g \in G$ such that $b=g^{-1} a g$. Prove that this is an equivalence relation.

Solution: R is reflexive: $a R a$ because $e^{-1} a e=a . R$ is symmetric: if $a R b$, i.e. if $b=g^{-1} a g$ for some g, then $a=g b g^{-1}=\left(g^{-1}\right)^{-1} b g^{-1}$ and $b R a$. R is transitive: if $a R b$, i.e. $b=g^{-1} a g$, and $b R c$, i.e. $c=h^{-1} b h$, then $c=h^{-1} g^{-1} a g h=(g h)^{-1} a(g h)$
and $a R c$. (Notice that the definition of relation requires that $b=g^{-1} a g$ for some g, i.e. for different pairs of a and b, g may be different.)
7. Compute orders of the following elements of the group $\left(\mathbb{C}^{\times}, \cdot\right): 3 i, \frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$.

Solution: $(3 i)^{n}=3^{n} i^{n}$. Since $\left|3^{n} i^{n}\right|=3^{n}$ (or, equivalently, since $3^{n} i^{n}$ equals either of $\left.3^{n},-3^{n}, 3^{n} i,-3^{n} i\right),(3 i)^{n} \neq 1$ for any n. Hence $3 i$ has infinite order.

Taking subsequent powers of $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$ shows that $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{8}=1$. Alternatively, you can just compute $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{8}=i$ and take it from there.
8. For a matrix A denote its transpose by A^{t}. A is orthogonal if $A^{-1}=A^{t}\left(A^{t}\right.$ means the transpose of A). Prove that the set of invertible orthogonal $n \times n$ matrices is a subgroup of $G L(n, \mathbb{R})$. (Hints: First recall - or deduce - that $(A B)^{t}=B^{t} A^{t}$ and $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$.)

Solution: We have to prove that (1) if A and B are invertible orthogonal matrices, then so is $A B ;(2)$ if A is an invertible orthogonal matrix, then so is A^{-1}.
(1) $(A B)^{t}=B^{t} A^{t}=B^{-1} A^{-1}=(A B)^{-1}$.
(2) $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{-1}$.
9. Let R be a commutative ring such that $1+1=0$. Prove that for any $x, y \in R$, $(x+y)^{2}=x^{2}+y^{2}$.

Solution: $(x+y)^{2}=(x+y)(x+y)=x^{2}+x y+y x+y^{2}$ (distributive law). Since R is commutative, $y x=x y$. Since $1+1=0, x y+x y=(1+1) x y=0 x y=0$. Thus $(x+y)^{2}=x^{2}+0+y^{2}=x^{2}+y^{2}$.
10. Prove that the subset $\{a+b j \mid a, b \in \mathbb{R}\}$ of \mathbb{H} is a field.

Solution: Since \mathbb{H} is a unital ring, we only have to prove that every nonzero element of the form $a+b j$ is invertible and that $(a+b j)(c+d j)=(c+d j)(a+b j)$ (commutativity of multiplication).

Invertibility of $a+b j:(a+b j)(a-b j)=a^{2}-b^{2} j^{2}=a^{2}+b^{2}$. Therefore, $(a+b j)^{-1}=\frac{a-b j}{a^{2}+b^{2}}$.

Commutativity of multiplication: $(a+b j)(c+d j)=a c+b c j+a d j+b d j^{2}=$ $c a+c b j+d a j+d b j^{2}=(c+d j)(a+b j)$.

