REAL ANALYSIS

ROBERT HOUGH

Problem 1. Does $\lim_{x\to\frac{\pi}{2}}(\sin x)^{\frac{1}{\cos x}}$ exist?

Problem 2. For two positive integers m and n compute

$$\lim_{x \to 0} \frac{(\cos x)^{\frac{1}{m}} - (\cos x)^{\frac{1}{n}}}{x^2}.$$

Problem 3. Let $f(x) = \sum_{k=1}^{n} a_k \sin kx$, with $a_1, a_2, ..., a_n \in \mathbb{R}, n \geq 1$. Prove that if $f(x) \leq |\sin x|$ for all $x \in \mathbb{R}$, then $|\sum_{k=1}^{n} k a_k| \leq 1$.

Problem 4. Does there exist a continuous function $f:[0,1] \to \mathbb{R}$ that assumes every element of its range an even finite number of times?

Problem 5. Let $f: I \to \mathbb{R}$ be a function defined on an interval. Show that if f has the intermediate value property and for any $y \in \mathbb{R}$ the set $f^{-1}(y)$ is closed, then f is continuous.

Problem 6. For any real number $\lambda \ge 1$, denote by $f(\lambda)$ the real solution to the equation $x(1 + \ln x) = \lambda$. Prove that

$$\lim_{\lambda \to \infty} \frac{f(\lambda)}{\frac{\lambda}{\ln \lambda}} = 1.$$

Problem 7. Let $f:[a,b] \to \mathbb{R}$ be a function, continuous on [a,b] and differentiable on (a,b). Let (α,β) be a point on the line passing through the points (a,f(a)), (b,f(b)) with $\alpha \notin [a,b]$. Prove that there exists a line passing through (α,β) that is tangent to the graph of f.

Problem 8. Let 0 < a < b and $t_i \ge 0$, i = 1, 2, ..., n. Prove that for any $x_1, x_2, ..., x_n \in [a, b]$,

$$\left(\sum_{i=1}^{n} t_i x_i\right) \left(\sum_{i=1}^{n} \frac{t_i}{x_i}\right) \leqslant \frac{(a+b)^2}{4ab} \left(\sum_{i=1}^{n} t_i\right)^2.$$

Problem 9. Let a_i , i = 1, 2, ..., n, be nonnegative numbers with $\sum_{i=1}^{n} a_i = 1$, and let $0 < x_i \le 1$, i = 1, 2, ..., n. Prove that

$$\sum_{i=1}^{n} \frac{a_i}{1+x_i} \le \frac{1}{1+x_1^{a_1}\cdots x_n^{a_n}}.$$

Problem 10. Let $0 < x_i < \pi$, i = 1, 2, ..., n, and set $x = \frac{x_1 + \cdots + x_n}{n}$. Prove that

$$\prod_{i=1}^{n} \left(\frac{\sin x_i}{x_i} \right) \leqslant \left(\frac{\sin x}{x} \right)^n.$$

Problem 11. Let a and b be positive real numbers. Compute the integral

$$\int_{a}^{b} \frac{e^{\frac{x}{a}} - e^{\frac{b}{x}}}{x} dx.$$

Problem 12. Compute

$$\int_0^\infty \frac{\ln x}{x^2 + a^2} dx,$$

where a > 0.

Problem 13. Let P(x) be a polynomial with real coefficients. Prove that

$$\int_0^\infty e^{-x} P(x) dx = P(0) + P'(0) + P''(0) + \dots$$

Problem 14. Compute

$$\lim_{n \to \infty} \left(\frac{2^{\frac{1}{n}}}{n+1} + \frac{2^{\frac{2}{n}}}{n+\frac{1}{2}} + \dots + \frac{2^{n/n}}{n+\frac{1}{n}} \right).$$