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Problem 1. Determine the number of permutations a1, a2, ..., a2004 of the numbers 1, 2, ..., 2004
for which

|a1 ´ 1| “ |a2 ´ 2| “ ¨ ¨ ¨ “ |a2004 ´ 2004| ą 0.

Problem 2. In how many regions do n spheres divide the 3 dimensional space if any two
intersect along a circle, no three intersect along a circle, and no four intersect at one
point?
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Problem 4. Let Fn be the Fibonacci sequence F1 “ F2 “ 1, Fn`1 “ Fn ` Fn´1 for n ě 2.
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Problem 5. Prove the analogue of the binomial formula
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where rxsn “ xpx´ 1qpx´ 2q ¨ ¨ ¨ px´ n` 1q.
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Problem 7. For a positive integer n, denote by Spnq the number of choices of signs ‘`’ or
‘´’ such that ˘1˘ 2˘ ¨ ¨ ¨ ˘ n “ 0. Prove that
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Problem 8. Prove the combinatorial identity
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Problem 9. Prove that the number of nonnegative integer solutions to the equation

x1 ` x2 ` ¨ ¨ ¨ ` xm “ n
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Problem 10. A permutation σ of a set S is called a derangement if it does not have fixed
points, i.e. σpxq ‰ x for all x. Find the number of derangements of t1, 2, 3, ..., nu.
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