COMBINATORICS

ROBERT HOUGH

Problem 1. Determine the number of permutations aq, as, ..., asgos of the numbers 1,2, ..., 2004
for which
|CL1 — 1| = |a2 - 2’ == ’(1,2004 - 2004| > 0.

Problem 2. In how many regions do n spheres divide the 3 dimensional space if any two
intersect along a circle, no three intersect along a circle, and no four intersect at one

point?
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Problem 3. Prove that
Problem 4. Let F,, be the Fibonacci sequence Fy = F5, =1, F,,1 = F, + F,,_1 for n > 2.

Prove
")+ (") v +F (") = B
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Problem 5. Prove the analogue of the binomial formula
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where [z], =2(z —1)(x —2)---(z —n —i—_l)

Problem 6. Compute the sums
- n - 1 n
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Problem 7. For a positive integer n, denote by S(n) the number of choices of signs ‘+’ or
‘—7such that £1 £2+--- £n = 0. Prove that
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Problem 8. Prove the combinatorial identity
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Problem 9. Prove that the number of nonnegative integer solutions to the equation

x1+x2+-~‘+xm:n
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Problem 10. A permutation o of a set S is called a derangement if it does not have fixed
points, i.e. o(z) # x for all z. Find the number of derangements of {1,2,3,...,n}.



