SEQUENCES AND SERIES

ROBERT HOUGH

Problem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(x)=f(x+\sqrt{2})=$ $f(x+\sqrt{3})$ for all x. Prove that f is constant.

Problem 2. Prove that the sequence $(\sin n)_{n}$ is dense in $[-1,1]$.
Problem 3. Define the sequence $\left(a_{n}\right)_{n \geqslant 0}$ by $a_{0}=0, a_{1}=1, a_{2}=2, a_{3}=6$, and

$$
a_{n+4}=2 a_{n+3}+a_{n+2}-2 a_{n+1}-a_{n}, \quad n \geqslant 0 .
$$

Prove that n divides a_{n} for all $n \geqslant 1$.
Problem 4. The sequence $a_{0}, a_{1}, a_{2}, \ldots$, satisfies

$$
a_{m+n}+a_{m-n}=\frac{1}{2}\left(a_{2 m}+a_{2 n}\right)
$$

for all nonnegative integers m, n with $m \geqslant n$. If $a_{1}=1$, determine a_{n}.
Problem 5. Let $p(x)=x^{2}-3 x+2$. Show that for any positive integer n there exist unique numbers a_{n} and b_{n} such that the polynomial $q_{n}(x)=x^{n}-a_{n} x-b_{n}$ is divisible by $p(x)$.
Problem 6. The sequence $\left(x_{n}\right)_{n}$ is defined by $x_{1}=4, x_{2}=19$, and for $n \geqslant 2, x_{n+1}=$ $\left\lceil\frac{x_{n}^{2}}{x_{n-1}}\right\rceil$, the smallest integer greater than or equal to $\frac{x_{n}^{2}}{x_{n-1}}$. Prove that $x_{n}-1$ is always a multiple of 3.
Problem 7. Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence of real numbers satisfying

$$
x_{n+m} \leqslant x_{n}+x_{m}, \quad n, m \geqslant 1 .
$$

Show that $\lim _{n} \frac{x_{n}}{n}$ exists and is equal to $\inf _{n \geqslant 1} \frac{x_{n}}{n}$.
Problem 8. Prove that the sequence $\left(a_{n}\right)_{n \geqslant 1}$ defined by

$$
a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n+1), \quad n \geqslant 1,
$$

is convergent.
Problem 9. Let $\left(a_{n}\right)_{n \geqslant 1}$ be a decreasing sequence of positive numbers converging to 0 . Prove that the series $S=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ is convergent.

Problem 10. Let a_{0}, b_{0}, c_{0} be real numbers. Define the sequences $\left(a_{n}\right)_{n},\left(b_{n}\right)_{n},\left(c_{n}\right)_{n}$ recursively by

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, b_{n+1}=\frac{b_{n}+c_{n}}{2}, c_{n+1}=\frac{c_{n}+a_{n}}{2}, \quad n \geqslant 0 .
$$

Prove the sequences are convergent and find the limit.
Problem 11. Show that if the series $\sum a_{n}$ converges, where $\left(a_{n}\right)_{n}$ is a decreasing sequence, then $\lim _{n} n a_{n}=0$.
Problem 12. Let t and ϵ be real numbers with $|\epsilon|<1$. Prove that the equation $x-\epsilon \sin x=$ t has a unique real solution.

Problem 13. Prove that for $n \geqslant 2$, the equation $x^{n}+x-1=0$ has a unique root in the interval $[0,1]$. If x_{n} denotes this root, prove that the sequence $\left(x_{n}\right)_{n}$ is convergent and find its limit.

Problem 14. Let p be a real number, $p \neq 1$. Compute

$$
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\cdots+n^{p}}{n^{p+1}} .
$$

Problem 15. Consider the polynomial $P(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}, a_{i}>0, i=$ $0,1,2, \ldots, m$. Denote by A_{m} and G_{m} the arithmetic and geometric means of $P(1), P(2), \ldots, P(n)$. Prove that

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{G_{n}}=\frac{e^{m}}{m+1}
$$

Problem 16. Given a sequence $\left(a_{n}\right)_{n}$ such that for any $\gamma>1$ the subsequence $a_{\left\lfloor\gamma^{n}\right\rfloor}$ converges to 0 , does it follow that the sequence $\left(a_{n}\right)_{n}$ itself converges to 0 ?

Problem 17. Let $\left(a_{n}\right)_{n \geqslant 0}$ be a strictly decreasing sequence of positive numbers, and let z be a complex number of absolute value less than 1 . Prove that the sum

$$
a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots
$$

is not equal to 0 .
Problem 18. Let w be an irrational number with $0<w<1$. Prove that w has a unique convergent expansion of the form

$$
w=\frac{1}{p_{0}}-\frac{1}{p_{0} p_{1}}+\frac{1}{p_{0} p_{1} p_{2}}-\cdots
$$

where $p_{0}, p_{1}, p_{2}, \ldots$ are integers, $1 \leqslant p_{0}<p_{1}<p_{2}<\ldots$.
Problem 19. For a nonnegative integer k, define $S_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}$. Prove that

$$
1+\sum_{k=0}^{r-1}\binom{r}{k} S_{k}(n)=(n+1)^{r}
$$

Problem 20. Evaluate in closed form

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{m!n!}{(m+n+2)!}
$$

Problem 21. Evaluate in closed form

$$
\sum_{k=0}^{n}(-1)^{k}(n-k)!(n+k)!
$$

