PROBABILITY

ROBERT HOUGH

Problem 1. Show that for any real numbers $a_{1}, a_{2}, \ldots, a_{n}$ we have the bound

$$
\left|\sum_{j=1}^{n} a_{j}\right|^{2}+\left|\sum_{j=1}^{n}(-1)^{j} a_{j}\right|^{2} \leqslant(n+2) \sum_{j=1}^{n} a_{j}^{2} .
$$

Can you give a sharper bound if n is even?
Problem 2. Prove that for complex a_{k} and $b_{k}, 1 \leqslant k \leqslant n$, one has

$$
\sum_{k=1}^{n}\left|a_{k}\right|^{2} \sum_{k=1}^{n}\left|b_{k}\right|^{2}-\left|\sum_{k=1}^{n} a_{k} b_{k}\right|^{2}=\sum_{1 \leqslant j<k \leqslant n}\left|\bar{a}_{j} b_{k}-a_{k} \bar{b}_{j}\right|^{2} .
$$

Problem 3. If x, y, z are non-negative real numbers for which $x+y+z=1$, prove

$$
\frac{1}{4} \leqslant x^{3}+y^{3}+z^{3}+6 x y z
$$

Problem 4. Let v and w be distinct, randomly chosen roots of the equation $z^{1997}-1=0$. Find the probability that $\sqrt{2+\sqrt{3}} \leqslant|v+w|$.

Problem 5. What is the probability that a permutation of the first n positive integers has the numbers 1 and 2 in the same cycle.

Problem 6. An unbiased coin is tossed n times. Find a formula, in closed form, for the expected value of $|H-T|$, where H is the number of heads, and T is the number of tails.
Problem 7. Prove the identities

$$
\sum_{k=1}^{n} \frac{1}{(k-1)!} \sum_{i=0}^{n-k} \frac{(-1)^{i}}{i!}=1, \quad \sum_{k=1}^{n} \frac{k}{(k-1)!} \sum_{i=0}^{n-k} \frac{(-1)^{i}}{i!}=2 .
$$

Problem 8. Given the independent events $A_{1}, A_{2}, \ldots, A_{n}$ with probabilities $p_{1}, p_{2}, \ldots, p_{n}$, find the probability that an odd number of these evects occurs.

Problem 9. A coin is tossed n times. What is the probability that two heads will turn up in succession somewhere in the sequence?

Problem 10. We play the coin tossing game in which if tosses match, I get both coins; if they differ, you get both. You have m coins, I have n. What is the expected length of the game?

Problem 11. Let α and β be given positive real numbers, with $\alpha<\beta$. If two points are selected at random from a straight line segment of length β, what is the probability that the distance between them is at least α ?

Problem 12. What is the probability that three points selected at random on a circle lie on a semicircle?

