## POLYNOMIALS

ROBERT HOUGH

Problem 1. Show that if $f(x)$ is a polynomial whose degree is less than $n$, then the fraction $\frac{f(x)}{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)}$ where $x_{1}, x_{2}, \ldots, x_{n}$ are $n$ distinct numbers, can be represented as a sum of $n$ partial fractions $\frac{A_{1}}{x-x_{1}}+\cdots+\frac{A_{n}}{x-x_{n}}$ where $A_{1}, \ldots, A_{n}$ are constants.

As an application, let $f(x)$ be a monic polynomial of degree $n$ with distinct zeros $x_{1}, x_{2}, \ldots, x_{n}$. Let $g(x)$ be any monic polynomial of degree $n-1$. Show that $\sum_{j=1}^{n} \frac{g\left(x_{j}\right)}{f^{\prime}\left(x_{j}\right)}=1$.
Problem 2. If $x_{1}, x_{2}, \ldots, x_{n}$ are distinct numbers, and $y_{1}, y_{2}, \ldots, y_{n}$ are any numbers, prove that there is a unique polynomial $P(x)$ of degree at most $n-1$ such that $P\left(x_{j}\right)=y_{j}$, $j=1,2, \ldots, n$.
Problem 3. If $n>1$, show that $(x+1)^{n}-x^{n}-1=0$ has a multiple root if and only if $n-1$ is divisible by 6 .

Problem 4. Find all polynomials whose coefficients are equal to either 1 or -1 and whose zeros are all real.
Problem 5. Prove that for every positive integer $n$,

$$
\tan \frac{\pi}{2 n+1} \tan \frac{2 \pi}{2 n+1} \cdots \tan \frac{n \pi}{2 n+1}=\sqrt{2 n+1}
$$

Problem 6. Determine all polynomials $P(x)$ with real coefficients satisfying $(P(x))^{n}=$ $P\left(x^{n}\right)$ for all $x \in \mathbb{R}$, where $n>1$ is a fixed integer.
Problem 7. Let $P(z)$ and $Q(z)$ be polynomials with complex coefficients of degree greater than or equal to 1 with the property that $P(z)=0$ if and only if $Q(z)=0$ and $P(z)=1$ if and only if $Q(z)=1$. Prove that the polynomials are equal.
Problem 8. Let $P(x)$ be a polynomial of degree $n \geqslant 3$ whose zeros $x_{1}<x_{2}<\cdots<x_{n}$ are real. Prove that

$$
P^{\prime}\left(\frac{x_{1}+x_{2}}{2}\right) P^{\prime}\left(\frac{x_{n-1}+x_{n}}{2}\right) \neq 0
$$

Problem 9. Let $a_{1}, \ldots, a_{n}$ be positive real numbers. Prove that the polynomial $P(x)=$ $x^{n}-a_{1} x^{n-1}-a_{2} x^{n-2}-\cdots-a_{n}$ has a unique positive zero.
Problem 10. For a polynomial $P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$, with distinct real zeros $x_{1}<x_{2}<\cdots<x_{n}, n \geqslant 3$, we set $\delta(P(x))=\min _{i}\left(x_{i+1}-x_{i}\right)$. Prove $\delta\left(P^{\prime}(x)\right)>\delta(P(x))$.
Problem 11. Associate to a prime the polynomial whose coefficients are the decimal digits of the prime. Prove that this polynomial is always irreducible over $\mathbb{Z}[x]$.
Problem 12. Let $p<m$ be two positive integers. Prove that

$$
\operatorname{det}\left(\begin{array}{cccc}
\binom{m}{0} & \binom{m}{1} & \cdots & \binom{m}{p} \\
0+1
\end{array}\right)\binom{m+1}{1} ~ \cdots ~ c c c c\binom{c+1}{p} .
$$

