NUMBER THEORY

ROBERT HOUGH

Problem 1. Prove that there is no infinite arithmetic progression whose terms are all perfect squares.
Problem 2. Express $\sum_{k=1}^{n}\lfloor\sqrt{k}\rfloor$ in terms of n and $a=\lfloor\sqrt{n}\rfloor$.
Problem 3. Prove that for any real number x and for any positive integer n,

$$
\lfloor n x\rfloor \geqslant \frac{\lfloor x\rfloor}{1}+\frac{\lfloor 2 x\rfloor}{2}+\cdots+\frac{\lfloor n x\rfloor}{n} .
$$

Problem 4. Let A be the set of positive integers representable in the form $a^{2}+2 b^{2}$ for integers a, b with $b \neq 0$. Show that if $p^{2} \in A$ for a prime p, then $p \in A$.
Problem 5. Prove that among any three distinct integers we can find two, say a and b, such that the number $a^{3} b-a b^{3}$ is a multiple of 10 .
Problem 6. The last four digits of a perfect square are equal. Prove that they are all equal to zero.

Problem 7. Given a positive integer $n>1000$, add the residues of 2^{n} modulo each of the numbers $1,2,3, \ldots, n$. Prove that this sum is greater than $2 n$.
Problem 8. Show that if n has $p-1$ digits all equal to 1 , where p is a prime not equal to 2,3 or 5 , then n is divisible by p.
Problem 9. Prove that for any prime $p>17$, the number

$$
p^{32}-1
$$

is divisible by 16320 .
Problem 10. Let p be an odd prime number. Show that the equation $x^{2} \equiv-1 \bmod p$ has a solution if and only if $p \equiv 1 \bmod 4$.
Problem 11. Given the non-zero integers a and d, show that the sequence

$$
a, a+d, a+2 d, \ldots
$$

contains infinitely many terms that have the same prime factors.
Problem 12. Let $P(x)$ be a polynomial with integer coefficients. For any positive integer m, let $N(m)$ denote the number of solutions to the equation $P(x) \equiv 0 \bmod m$. Show that if m_{1} and m_{2} are coprime integers, then $N\left(m_{1} m_{2}\right)=N\left(m_{1}\right) N\left(m_{2}\right)$.
Problem 13. Let a, b, c, d be integers with the property that for any two integers m and n there exist integers x and y satisfying the system

$$
a x+b y=m, \quad c x+d y=n .
$$

Prove that $a d-b c= \pm 1$.
Problem 14. Find a solution to the Diophantine equation

$$
x^{2}-\left(m^{2}+1\right) y^{2}=1,
$$

where m is a positive integer.

