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Problem 1. The number 3 can be expressed as the sum of one or more positive integers,
taking order into account, in four ways, 3, 2 ` 1, 1 ` 2, 1 ` 1 ` 1. Prove that a positive
integer n can be so expressed in 2n´1 ways.

Problem 2. A real-valued function f , defined on the positive rational numbers, satisfies
fpx` yq “ fpxqfpyq for all positive rational numbers x and y. Prove that fpxq “ rfp1qsx

for all positive rational x.

Problem 3. Prove that
?

2`
?

3`
?

5 is an irrational number.

Problem 4. Show that no set of nine consecutive integers can be partitioned into two sets
with the product of the elements of the first set equal to the product of the elements of
the second set.

Problem 5. Every point of three-dimensional space is colored red, green or blue. Prove
that one of the colors attains all distances, meaning that any positive real number repre-
sents the distance between two points of this color.

Problem 6. Show that there does not exist a strictly increasing function f : N Ñ N
satisfying fp2q “ 3 and fpmnq “ fpmqfpnq for all m,n P N.

Problem 7. Show that the interval r0, 1s cannot be partitioned into two disjoint sets A
and B such that B “ A` a for some real number a.

Problem 8. Prove that | sinnx| ď n| sinx| for any real number x and positive integer n.

Problem 9. Prove that for any real numbers x1, ..., xn, | sinx1| ` ¨ ¨ ¨ ` | sinxn| ` | cospx1`

x2 ` ¨ ¨ ¨ ` xnq| ě 1.

Problem 10. Prove that for any positive integer n ě 2 there is a positive integer m that
can be written simultaneously as the sum of 2,3 , ..., n non-zero squares of integers.

Problem 11. Prove that any polygon can be dissected into triangles by interior diagonals.

Problem 12. Let f : RÑ R be a function satisfying f
`

x1`x2

2

˘

“
fpx1q`fpx2q

2
. Prove that

f
´x1 ` x2 ` ¨ ¨ ¨ ` xn

n

¯

“
fpx1q ` ¨ ¨ ¨ ` fpxnq

n
for any x1, ..., xn.

Problem 13. Show that if a1, ..., an are nonnegative numbers, then

p1` a1qp1` a2q ¨ ¨ ¨ p1` anq ě p1` pa1a2 ¨ ¨ ¨ anq
1
n q

n.
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