CONTINUITY, DERIVATIVES, INTEGRALS

ROBERT HOUGH

Problem 1. Does there exist a continuous function $f:[0,1] \rightarrow \mathbb{R}$ that assumes every element of its range an even (finite) number of times?
Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous decreasing function. Prove that the system

$$
x=f(y), y=f(z), z=f(x)
$$

has a unique solution.
Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $|f(x)-f(y)| \geqslant|x-y|$ for all $x, y \in \mathbb{R}$. Prove that the range of f is all of \mathbb{R}.

Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. For $x \in \mathbb{R}$ we define

$$
g(x)=f(x) \int_{0}^{x} f(t) d t
$$

Show that if g is a nonincreasing function, then f is identically equal to zero.
Problem 5. Let f be a function having a continuous derivative on $[0,1]$ and with the property that $0<f^{\prime}(x) \leqslant 1$. Also, suppose that $f(0)=0$. Prove that

$$
\left[\int_{0}^{1} f(x) d x\right]^{2} \geqslant \int_{0}^{1}[f(x)]^{3} d x
$$

Give an example with equality.
Problem 6. Let α be a real number such that n^{α} is an integer for every positive integer n. Prove that α is a nonnegative integer.
Problem 7. Show that if a function $f:[a, b] \rightarrow \mathbb{R}$ is convex, then it is continuous on (a, b).

Problem 8. Let $0<a<b$ and $t_{i}, i=1,2, \ldots, n$. Prove that for any $x_{1}, x_{2}, \ldots, x_{n} \in[a, b]$,

$$
\left(\sum_{i=1}^{n} t_{i} x_{i}\right)\left(\sum_{i=1}^{n} \frac{t_{i}}{x_{i}}\right) \leqslant \frac{(a+b)^{2}}{4 a b}\left(\sum_{i=1}^{n} t_{i}\right)^{2} .
$$

Problem 9. Prove that for any natural number $n \geqslant 2$ and any $|x| \leqslant 1$

$$
(1+x)^{n}+(1-x)^{n} \leqslant 2^{n}
$$

Problem 10. Let $a_{i}, i=1,2, \ldots, n$, be nonnegative numbers with $\sum_{i=1}^{n} a_{i}=1$, and let $0<x_{i} \leqslant 1, i=1,2, \ldots, n$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i}}{1+x_{i}} \leqslant \frac{1}{1+x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}} .
$$

Problem 11. Compute the integral

$$
\int_{0}^{\frac{\pi}{4}} \ln (1+\tan x) d x
$$

Problem 12. Let $P(x)$ be a polynomial with real coefficients. Prove that

$$
\int_{0}^{\infty} e^{-x} P(x) d x=P(0)+P^{\prime}(0)+P^{\prime \prime}(0)+\ldots
$$

Problem 13. Determine the continuous functions $f:[0,1] \rightarrow \mathbb{R}$ that satisfy

$$
\int_{0}^{1} f(x)(x-f(x)) d x=\frac{1}{12} .
$$

Problem 14. Let f be a non-increasing function on the interval $[0,1]$. Prove that for any $\alpha \in(0,1)$,

$$
\alpha \int_{0}^{1} f(x) d x \leqslant \int_{0}^{\alpha} f(x) d x
$$

Problem 15. Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geqslant \int_{0}^{1}|f(x)| d x
$$

Problem 16. Prove that for $|x|<1$,

$$
\arcsin x=\sum_{k=0}^{\infty} \frac{1}{2^{2 k}(2 k+1)}\binom{2 k}{k} x^{2 k+1} .
$$

Problem 17. Prove that for every $0<x<2 \pi$ the following formula is valid:

$$
\frac{\pi-x}{2}=\frac{\sin x}{1}+\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\cdots
$$

Derive the formula

$$
\frac{\pi}{4}=\sum_{k=1}^{\infty} \frac{\sin (2 k-1) x}{2 k-1}, \quad x \in(0, \pi)
$$

Problem 18. Use the Fourier series of the function of period 1 defined by $f(x)=\frac{1}{2}-x$ for $0 \leqslant x<1$ to prove Euler's formula

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots
$$

