ALGEBRA

ROBERT HOUGH

Problem 1. Given distinct integers $x_1, x_2, ..., x_n$, prove that $\prod_{i>j} (x_i - x_j)$ is divisible by 1!2!3!...(n-1)!.

Problem 2. Prove that for any integers $x_1, x_2, ..., x_n$ and positive integers $k_1, k_2, ..., k_n$, the determinant

$$\det \begin{pmatrix} x_1^{k_1} & x_2^{k_1} & \cdots & x_n^{k_1} \\ x_1^{k_2} & x_2^{k_2} & \cdots & x_n^{k_2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{k_n} & x_2^{k_n} & \cdots & x_n^{k_n} \end{pmatrix}$$

is divisible by n!.

Problem 3. Let $A = (a_{ij})_{ij}$ be an $n \times n$ matrix such that $\sum_{j=1}^{n} |a_{ij}| < 1$ for each *i*. Prove that $I_n - A$ is invertible.

Problem 4. Let $\alpha = \frac{\pi}{n+1}$, n > 2. Prove that the $n \times n$ matrix

$/\sin\alpha$	$\sin 2lpha$	• • •	$\sin n\alpha$
$\sin 2\alpha$	$\sin 4\alpha$	• • •	$\sin 2n\alpha$
:	•	·	:
$\sin n\alpha$	$\sin 2n\alpha$		$\sin n^2 \alpha$

is invertible.

Problem 5. Let A be an $n \times n$ such that there exists a positive integer k for which

$$kA^{k+1} = (k+1)A^k.$$

Prove that the matrix A - I is invertible and find its inverse.

Problem 6. Let $P(x) = x^n + x^{n-1} + \cdots + x + 1$. Find the remainder obtained when $P(x^{n+1})$ is divided by P(x).

Problem 7. Prove that every odd polynomial function of degree equal to 2m - 1 can be written as

$$P(x) = c_1 \binom{x}{1} + c_2 \binom{x+1}{3} + c_3 \binom{x+2}{5} + \dots + c_m \binom{x+m-1}{2m-1} = x(x-1) \cdots \frac{x-m+1}{m!}.$$

where $\binom{x}{m} = x(x-1)\cdots \frac{x-m+1}{m!}$.

Problem 8. Let n be a positive integer and P(x) and nth-degree polynomial with complex coefficients such that P(0), P(1), ..., P(n) are all integers. Prove that n!P(x) has integer coefficients.

Problem 9. Let A be the $n \times n$ matrix whose i, j entry is i + j for all i, j = 1, 2, ..., n. What is the rank of A?

Problem 10. There are given 2n+1 real numbers, $n \ge 1$, with the property that whenever one of them is removed, the remaining 2n numbers can be split into two sets of n elements that have the same sum of elements. Prove that all of the numbers are equal.

Problem 11. Let A be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix B such that ABA = A.

Problem 12. A linear map A on the n-dimensional vector space V is called an involution if $A^2 = I$.

- (1) Prove that for every involution A on V there exists a basis of V consisting of eigenvectors of A.
- (2) Find the maximal number of distinct pairwise commuting involutions.

Problem 13. Let U and V be isometric linear transformations of \mathbb{R}^n , $n \ge 1$, with the property that $||Ux - x|| \le \frac{1}{2}$ and $||Vx - x|| \le \frac{1}{2}$ for all $x \in \mathbb{R}^n$ with ||x|| = 1. Prove that

$$\|UVU^{-1}V^{-1}x - x\| \le \frac{1}{2}$$

for all $x \in \mathbb{R}^n$ with ||x|| = 1.

Problem 14. Let A be a square matrix whose off-diagonal entries are positive. Prove that the rightmost eigenvalue of A in the complex plane is real and all other eigenvalues are strictly to its left in the complex plane.

Problem 15. Let $x_1, x_2, ..., x_n$ be differentiable real-valued functions of a variable t that satisfy

$$\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$
$$\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$$
$$\dots$$
$$\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n$$

for some constants $a_{ij} > 0$. Suppose for all *i* that $x_i(t) \to 0$ as $t \to \infty$. Are the functions x_i linearly dependent?

Problem 16. Consider a set S and a binary operation * on S such that x * (y * x) = y for all $x, y \in S$. Prove that each of the equations a * x = b and x * a = b has a unique solution S.

Problem 17. On a set M an operation * is given satisfying the properties

- (1) There is $e \in M$ such that x * e = x for all $x \in M$;
- (2) (x * y) * z = (z * x) * y for all $x, y, z \in M$.

Prove that the operation * is both associative and commutative.