## ALGEBRA

## ROBERT HOUGH

Problem 1. Given distinct integers $x_{1}, x_{2}, \ldots, x_{n}$, prove that $\prod_{i>j}\left(x_{i}-x_{j}\right)$ is divisible by 1!2!3!... $(n-1)$ !.

Problem 2. Prove that for any integers $x_{1}, x_{2}, \ldots, x_{n}$ and positive integers $k_{1}, k_{2}, \ldots, k_{n}$, the determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{k_{1}} & x_{2}^{k_{1}} & \cdots & x_{n}^{k_{1}} \\
x_{1}^{k_{2}} & x_{2}^{k_{2}} & \cdots & x_{n}^{k_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{k_{n}} & x_{2}^{k_{n}} & \cdots & x_{n}^{k_{n}}
\end{array}\right)
$$

is divisible by $n!$.
Problem 3. Let $A=\left(a_{i j}\right)_{i j}$ be an $n \times n$ matrix such that $\sum_{j=1}^{n}\left|a_{i j}\right|<1$ for each $i$. Prove that $I_{n}-A$ is invertible.

Problem 4. Let $\alpha=\frac{\pi}{n+1}, n>2$. Prove that the $n \times n$ matrix

$$
\left(\begin{array}{cccc}
\sin \alpha & \sin 2 \alpha & \cdots & \sin n \alpha \\
\sin 2 \alpha & \sin 4 \alpha & \cdots & \sin 2 n \alpha \\
\vdots & \vdots & \ddots & \vdots \\
\sin n \alpha & \sin 2 n \alpha & \cdots & \sin n^{2} \alpha
\end{array}\right)
$$

is invertible.
Problem 5. Let $A$ be an $n \times n$ such that there exists a positive integer $k$ for which

$$
k A^{k+1}=(k+1) A^{k} .
$$

Prove that the matrix $A-I$ is invertible and find its inverse.
Problem 6. Let $P(x)=x^{n}+x^{n-1}+\cdots+x+1$. Find the remainder obtained when $P\left(x^{n+1}\right)$ is divided by $P(x)$.
Problem 7. Prove that every odd polynomial function of degree equal to $2 m-1$ can be written as

$$
P(x)=c_{1}\binom{x}{1}+c_{2}\binom{x+1}{3}+c_{3}\binom{x+2}{5}+\cdots+c_{m}\binom{x+m-1}{2 m-1}
$$

where $\binom{x}{m}=x(x-1) \ldots \frac{x-m+1}{m!}$.
Problem 8. Let $n$ be a positive integer and $P(x)$ and $n$ th-degree polynomial with complex coefficients such that $P(0), P(1), \ldots, P(n)$ are all integers. Prove that $n!P(x)$ has integer coefficients.

Problem 9. Let $A$ be the $n \times n$ matrix whose $i, j$ entry is $i+j$ for all $i, j=1,2, \ldots, n$. What is the rank of $A$ ?

Problem 10. There are given $2 n+1$ real numbers, $n \geqslant 1$, with the property that whenever one of them is removed, the remaining $2 n$ numbers can be split into two sets of $n$ elements that have the same sum of elements. Prove that all of the numbers are equal.

Problem 11. Let $A$ be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix $B$ such that $A B A=A$.

Problem 12. A linear map $A$ on the $n$-dimensional vector space $V$ is called an involution if $A^{2}=I$.
(1) Prove that for every involution $A$ on $V$ there exists a basis of $V$ consisting of eigenvectors of $A$.
(2) Find the maximal number of distinct pairwise commuting involutions.

Problem 13. Let $U$ and $V$ be isometric linear transformations of $\mathbb{R}^{n}, n \geqslant 1$, with the property that $\|U x-x\| \leqslant \frac{1}{2}$ and $\|V x-x\| \leqslant \frac{1}{2}$ for all $x \in \mathbb{R}^{n}$ with $\|x\|=1$. Prove that

$$
\left\|U V U^{-1} V^{-1} x-x\right\| \leqslant \frac{1}{2}
$$

for all $x \in \mathbb{R}^{n}$ with $\|x\|=1$.
Problem 14. Let $A$ be a square matrix whose off-diagonal entries are positive. Prove that the rightmost eigenvalue of $A$ in the complex plane is real and all other eigenvalues are strictly to its left in the complex plane.
Problem 15. Let $x_{1}, x_{2}, \ldots, x_{n}$ be differentiable real-valued functions of a variable $t$ that satisfy

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
\frac{d x_{2}}{d t} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \cdots \\
\frac{d x_{n}}{d t} & =a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

for some constants $a_{i j}>0$. Suppose for all $i$ that $x_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$. Are the functions $x_{i}$ linearly dependent?
Problem 16. Consider a set $S$ and a binary operation $*$ on $S$ such that $x *(y * x)=y$ for all $x, y \in S$. Prove that each of the equations $a * x=b$ and $x * a=b$ has a unique solution $S$.

Problem 17. On a set $M$ an operation * is given satisfying the properties
(1) There is $e \in M$ such that $x * e=x$ for all $x \in M$;
(2) $(x * y) * z=(z * x) * y$ for all $x, y, z \in M$.

Prove that the operation $*$ is both associative and commutative.

