NUMBER THEORY

ROBERT HOUGH

Problem 1. Three infinite arithmetic progressions are given, whose terms are positive integers. Assuming that each of the numbers $1,2,3,4,5,6,7,8$ occurs in at least one of these progressions, show that 1980 occurs in one of them.

Problem 2. For a positive integer n and a real number x, compute the sum

$$
\sum_{0 \leqslant i<j \leqslant n}\left\lfloor\frac{x+i}{j}\right\rfloor .
$$

Problem 3. For p and q co-prime positive integers, prove

$$
\left\lfloor\frac{p}{q}\right\rfloor+\left\lfloor\frac{2 p}{q}\right\rfloor+\left\lfloor\frac{3 p}{q}\right\rfloor+\cdots+\left\lfloor\frac{(q-1) p}{q}\right\rfloor=\left\lfloor\frac{q}{p}\right\rfloor+\left\lfloor\frac{2 q}{p}\right\rfloor+\left\lfloor\frac{3 q}{p}\right\rfloor+\cdots+\left\lfloor\frac{(p-1) q}{p}\right\rfloor .
$$

Problem 4. Let $p=3 k+1$ be prime and let

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(2 k-1) 2 k}=\frac{m}{n}
$$

for some coprime positive integers m and n. Prove that p divides m.
Problem 5. Let k and n be integers with $0 \leqslant k \leqslant \frac{n^{2}}{4}$. Assume that k has no prime divisor greater than n. Prove that n ! is divisible by k.
Problem 6. Prove that the sequence $2^{n}-3, n \geqslant 1$, contains an infinite subsequence whose terms are pairwise relatively prime.

Problem 7. Let p be an odd prime and $a_{1}, a_{2}, \ldots, a_{p}$ an arithmetic progression whose common difference is not divisible by p. Prove that there exists an index i such that the number $a_{1} a_{2} \ldots a_{p}+a_{i}$ is divisible by p^{2}.
Problem 8. Prove for every positive integer n the identity

$$
\phi(1)\left\lfloor\frac{n}{1}\right\rfloor+\phi(2)\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\phi(n)\left\lfloor\frac{n}{n}\right\rfloor=\frac{n(n+1)}{2} .
$$

Problem 9. Is there a sequence of positive integers in which every positive integer occurs exactly once and for every $k=1,2,3, \ldots$ the sum of the first k terms is divisible by k ?

Problem 10. A lattice point $(x, y) \in \mathbb{Z}^{2}$ is visible from the origin if x and y are coprime. Prove that for any positive integer n there exists a lattice point (a, b) whose distance from every visible point is greater than n.

Problem 11. Prove that there exist infinitely many squares of form $1+2^{x^{2}}+2^{y^{2}}$, where x and y are positive integers.
Problem 12. Prove that the equation $x^{3}+y^{3}+z^{3}+t^{3}=1999$ has infinitely many integer solutions.

Problem 13. Calculate the sum

$$
6+66+\cdots+666 \ldots 6
$$

in which the last summand has n digits that are 6 's.

Problem 14. Let $a_{1}, a_{2}, \ldots, a_{n}$ be n positive integers. Show that for some i and $k, 1 \leqslant i \leqslant$ $i+k \leqslant n$

$$
a_{i}+a_{i+1}+\cdots+a_{i+k}
$$

is divisible by n.
Problem 15. Show that if m is a positive rational number then $m+\frac{1}{m}$ is an integer only if $m=1$.
Problem 16. Prove that $1^{99}+2^{99}+3^{99}+4^{99}+5^{99}$ is divisible by 5 .
Problem 17. Let f be a function with the following properties.

1. $f(n)$ is defined for every positive integer n
2. $f(n)$ is an integer
3. $f(2)=2$
4. $f(m n)=f(m) f(n)$ all m, n
5. $f(m)>f(n)$ when $m>n$.

Prove that $f(n)=n$ for all n.
Problem 18. Prove that for $n=1,2,3, \ldots$,

$$
\left\lfloor\frac{n+1}{2}\right\rfloor+\left\lfloor\frac{n+2}{4}\right\rfloor+\left\lfloor\frac{n+4}{8}\right\rfloor+\ldots=n .
$$

Problem 19. What is the maximum number of terms in a geometric progression with common ratio greater than 1 whose entries all come from the set of integers between 100 and 1000 inclusive?

Problem 20. Let n be a positive integer. Prove that the binomial coefficients

$$
\binom{n}{1},\binom{n}{2}, \cdots,\binom{n}{n-1}
$$

are all even if and only if n is a power of 2 .
Problem 21. Prove that, for any positive integer n,

$$
[\sqrt{n}+\sqrt{n+1}]=[\sqrt{4 n+2}]
$$

where [.] denotes the greatest integer function.
Problem 22. Prove that any positive integer n has a representation

$$
n=\epsilon_{1} 1^{2}+\epsilon_{2} 2^{2}+\cdots+\epsilon_{m} m^{2}
$$

where each $\epsilon_{i}= \pm 1$.
Problem 23. Suppose a and b are distinct real numbers such that

$$
a-b, a^{2}-b^{2}, a^{3}-b^{3}, \ldots
$$

are all integers.
(1) Must a and b be rational?
(2) Must a and b be integers?

Problem 24. On the multiplication table of numbers 1 through n times numbers 1 through n, show that the fraction of numbers 1 through n^{2} which appear tends to 0 .

Problem 25. Consider the sequence $1,2,3,4,6,8,9,12,16,18, \ldots$ of positive numbers composed of 2's and 3's, arranged in increasing order. Prove that the ratio of consecutive terms converges to 1 .

Problem 26. \#44 Prove that the integers $\left\lfloor(\sqrt{2}+1)^{n}\right\rfloor$ are alternatively even and odd.
Problem 27. Let $[\alpha, \beta]$ be an interval which contains no integers. Prove that there is an integer n so that $[n \alpha, n \beta]$ contains no integers and has length at least $\frac{1}{6}$.
Problem 28. Prove that the product of three consecutive integers is never a perfect power.
Problem 29. How many perfect squares are there mod 2^{n}.
Problem 30. If a set of positive integers has sum n, what is the biggest its product can be?

