MULTIVARIABLE CALCULUS

ROBERT HOUGH

Problem 1. Let 0 < a < b and $t_i \ge 0$, i = 1, 2, ..., n. Prove that for any $x_1, x_2, ..., x_n \in [a, b]$,

$$\left(\sum_{i=1}^n t_i x_i\right) \left(\sum_{i=1}^n \frac{t_i}{x_i}\right) \leqslant \frac{(a+b)^2}{4ab} \left(\sum_{i=1}^n t_i\right)^2.$$

Problem 2. Let $0 < x_i < \pi$, i = 1, 2, ..., n, and set $x = \frac{x_1 + x_2 + \cdots + x_n}{n}$. Prove that

$$\prod_{i=1}^{n} \left(\frac{\sin x_i}{x_i} \right) \leqslant \left(\frac{\sin x}{x} \right)^n.$$

Problem 3. Compute

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx.$$

Calculate

$$\lim_{n \to \infty} \left[\frac{2 \cdot 4 \cdot 6 \cdots 2n}{1 \cdot 3 \cdot 5 \cdots (2n-1)} \right] \cdot \frac{1}{n} = \pi.$$

Problem 4. Compute

$$\lim_{n \to \infty} \left(\frac{2^{\frac{1}{n}}}{n+1} + \frac{2^{\frac{2}{n}}}{n+\frac{1}{2}} + \dots + \frac{2^{\frac{n}{n}}}{n+\frac{1}{n}} \right).$$

Problem 5. Prove that for any real x the series

$$1 + \frac{x^4}{4!} + \frac{x^8}{8!} + \frac{x^{12}}{12!} + \dots$$

is convergent and find its limit.

Problem 6. Prove that if the function u(x,t) satisfies the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad (x, t) \in \mathbb{R}^2,$$

then so does the function

$$v(x,t) = \frac{1}{\sqrt{t}}u(xt^{-1}, -t^{-1}), \qquad x \in \mathbb{R}, t > 0.$$

Problem 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function with continuous partial derivatives and with f(0,0) = 0. Prove that there exist continuous functions $g_1, g_2: \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(x,y) = xg_1(x,y) + yg_2(x,y).$$

Problem 8. Calculate the integral of the function

$$f(x, y, z) = \frac{x^4 + 2y^4}{x^4 + 4y^4 + z^4}$$

over the ball $B = \{(x, y, z) : x^2 + y^2 + z^2 \le 1\}.$

Problem 9. Assume that a curve (x(t), y(t)) runs counterclockwise around a region D. Prove that the area of D is given by the formula

$$A = \frac{1}{2} \oint_{\partial D} (xy' - yx') dt.$$

Problem 10. Compute

$$\oint_C y^2 dx + z^2 dy + x^2 dz,$$

where C is the Viviani curve, defined as the intersection of the sphere $x^2 + y^2 + z^2 = a^2$ with the cylinder $x^2 + y^2 = ax$.

Problem 11. Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be twice continuously differentiable functions that are constant along lines that pass through the origin. Prove that on the unit ball $B = \{(x, y, z) : x^2 + y^2 + z^2 \leq 1\}$,

$$\iiint\limits_B f\Delta g dV = \iint\limits_B g\Delta f dV$$

where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian.

Problem 12. Prove Gauss's Law, which states that the total flux of a gravitational field through a closed surface equals $-4\pi G$ times the mass enclosed by the surface, where G is the gravitational constant.

Problem 13. Let n be a positive integer. Show that the equation

$$(1 - x^2)y'' - xy' + n^2y = 0$$

admits as a particular solution an *n*th degree polynomial.

Problem 14. The function f has the property that

$$|f(a) - f(b)| \le |a - b|^2$$

for all real a, b. Show that f is a constant.

Problem 15. If $a_0 \ge a_1 \ge a_2 \ge ... \ge a_n > 0$, prove that any root r of the polynomial

$$P(z) \equiv a_0 z^n + a_1 z^{n-1} + \dots + a_n$$

satisfies $|r| \leq 1$.

Problem 16. Does there exist a continuous function y = f(x), defined for all real x, whose graph intersects every non-vertical line in infinitely many points?

Problem 17. Is there a function f, differentiable for all real x, such that

$$|f(x)| < 2,$$
 $f(x)f'(x) \ge \sin x$?

Problem 18. Does the Maclaurin series for e^{x-x^3} have any zero coefficients?

Problem 19. A function $f(x) \in C^{\infty}[0,\infty)$ is called *completely monotonic* if $(-\frac{d}{dx})^k f(x) \ge 0$ for all k = 0, 1, 2, ... and all $x \ge 0$. These functions form a convex cone. Prove that the functions $\alpha e^{-\beta x}$, $\alpha, \beta \ge 0$ are extreme points.

Problem 20. A function $f(x) \in C[0, \infty)$ is called slow if $f(x+a) - f(x) \to 0$ as $x \to \infty$ for each fixed a. Prove that a slow function can be written as the sum g(x) + h(x), where $g(x) \to 0$ and $h'(x) \to 0$ as $x \to \infty$.

Problem 21. f(x) is continuous on $[0, \infty)$, and is such that, for each fixed a > 0, $f(na) \to 0$. Must $f(x) \to 0$ as $x \to \infty$?

Problem 22. Show that $f(x) \in C^1[a, b]$ iff the limit as $h \to 0$ of (f(x+h) - f(x))/h exists uniformly on [a, b].

Problem 23. Let $f(x) \in C^2$. Show that if f(x) and f''(x) are bounded, then f'(x) is.

Problem 24. Given that $f(x) + f'(x) \to 0$ as $x \to \infty$, prove that both $f(x) \to 0$ and $f'(x) \to 0$.

Problem 25. $\sin \sin \sin \sin ... \sin(\pi/2)$ (n interates) approaches 0 as $n \to \infty$. Obtain a rate.