LINEAR ALGEBRA

ROBERT HOUGH

Problem 1. Let a, b, c, d be real numbers such that $c \neq 0$ and ad - bc = 1. Prove that there exist u and v such that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & -u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \begin{pmatrix} 1 & -v \\ 0 & 1 \end{pmatrix}.$$

Problem 2. Calculate the *n*th power of the $m \times m$ matrix

$$\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{pmatrix}.$$

Problem 3. Derive the formula for the determinant of a circulant matrix

$$\det \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ x_n & x_1 & x_2 & \cdots & x_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_3 & x_4 & x_5 & \cdots & x_2 \\ x_2 & x_3 & x_4 & \cdots & x_1 \end{pmatrix} = (-1)^{n-1} \prod_{j=0}^{n-1} \left(\sum_{k=1}^n \zeta^{jk} x_k \right),$$

 $\zeta = e^{2\pi i/n}.$

Problem 4. Compute the determinant of the $n \times n$ matrix $A = (a_{ij})_{ij}$ where $a_{ij} = (-1)^{|i-j|}$ if $i \neq j$ and $a_{ii} = 2$.

Problem 5. Prove that for any integers $x_1, x_2, ..., x_n$ and positive integers $k_1, k_2, ..., k_n$, the determinant

$$\det \begin{pmatrix} x_1^{k_1} & x_2^{k_1} & \cdots & x_n^{k_1} \\ x_1^{k_2} & x_2^{k_2} & \cdots & x_n^{k_2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{k_n} & x_2^{k_n} & \cdots & x_n^{k_n} \end{pmatrix}$$

is divisible by n!.

Problem 6. Let P(t) be a polynomial of even degree with real coefficients. Prove that f(X) = P(X) defined on the set of $n \times n$ matrices is not onto.

Problem 7. Let $A = (a_{ij})_{ij}$ be an $n \times n$ such that $\sum_{j=1}^{n} |a_{ij}| < 1$ for each *i*. Prove that I - A is invertible.

Problem 8. Let A be an $n \times n$ matrix such that there exists a positive integer k for which $kA^{k+1} = (k+1)A^k$. Prove that A - I is invertible and find its inverse.

Problem 9. A linear map A on the n-dimensional vector space V is called an involution if $A^2 = I$.

ROBERT HOUGH

- a. Prove that for every involution A on V there exists a basis of V consisting of eigenvectors of A.
- b. Find the maximal number of distinct pairwise commuting involutions.

Problem 10. Find the 2×2 matrices with real entries that satisfy the equation

$$X^3 - 3X^2 = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix}$$

Problem 11. Let $x_1, x_2, ..., x_n$ be differentiable (real-valued) functions of a single variable t that satisfy

$$\frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n,$$

$$\frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n,$$

$$\dots$$

$$\frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n,$$

for constants $a_{ij} > 0$. Suppose for all *i* that $x_i(t) \to 0$ as $t \to \infty$. Are the functions x_i necessarily linearly dependent?

Problem 12. Let A be a 4×4 matrix such that each entry of A is either 2 or -1. Let $d = \det(A)$. Show that d is divisible by 27.

Problem 13. For any vector v in \mathbb{R}^n and permutation σ of $\{1, 2, ..., n\}$, define $\sigma(v) = (x_{\sigma(1)}, ..., x_{\sigma(n)})$. What are the possibilities for the dimension of the space spanned by $\sigma(v)$ such that σ is a permutation?

Problem 14. Let $f_1, f_2, ..., f_n$ be linearly independent, differentiable functions. Prove that some n-1 of their derivatives $f'_1, f'_2, ..., f'_n$ are independent.