LINEAR ALGEBRA

ROBERT HOUGH

Problem 1. Let a, b, c, d be real numbers such that $c \neq 0$ and $a d-b c=1$. Prove that there exist u and v such that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & -u \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -v \\
0 & 1
\end{array}\right) .
$$

Problem 2. Calculate the nth power of the $m \times m$ matrix

$$
\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
0 & 0 & \lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \lambda
\end{array}\right)
$$

Problem 3. Derive the formula for the determinant of a circulant matrix

$$
\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{n} & x_{1} & x_{2} & \cdots & x_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{3} & x_{4} & x_{5} & \cdots & x_{2} \\
x_{2} & x_{3} & x_{4} & \cdots & x_{1}
\end{array}\right)=(-1)^{n-1} \prod_{j=0}^{n-1}\left(\sum_{k=1}^{n} \zeta^{j k} x_{k}\right),
$$

$\zeta=e^{2 \pi i / n}$.
Problem 4. Compute the determinant of the $n \times n$ matrix $A=\left(a_{i j}\right)_{i j}$ where $a_{i j}=(-1)^{|i-j|}$ if $i \neq j$ and $a_{i i}=2$.

Problem 5. Prove that for any integers $x_{1}, x_{2}, \ldots, x_{n}$ and positive integers $k_{1}, k_{2}, \ldots, k_{n}$, the determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{k_{1}} & x_{2}^{k_{1}} & \cdots & x_{n}^{k_{1}} \\
x_{1}^{k_{2}} & x_{2}^{k_{2}} & \cdots & x_{n}^{k_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{k_{n}} & x_{2}^{k_{n}} & \cdots & x_{n}^{k_{n}}
\end{array}\right)
$$

is divisible by $n!$.
Problem 6. Let $P(t)$ be a polynomial of even degree with real coefficients. Prove that $f(X)=P(X)$ defined on the set of $n \times n$ matrices is not onto.

Problem 7. Let $A=\left(a_{i j}\right)_{i j}$ be an $n \times n$ such that $\sum_{j=1}^{n}\left|a_{i j}\right|<1$ for each i. Prove that $I-A$ is invertible.

Problem 8. Let A be an $n \times n$ matrix such that there exists a positive integer k for which $k A^{k+1}=(k+1) A^{k}$. Prove that $A-I$ is invertible and find its inverse.

Problem 9. A linear map A on the n-dimensional vector space V is called an involution if $A^{2}=I$.
a. Prove that for every involution A on V there exists a basis of V consisting of eigenvectors of A.
b. Find the maximal number of distinct pairwise commuting involutions.

Problem 10. Find the 2×2 matrices with real entries that satisfy the equation

$$
X^{3}-3 X^{2}=\left(\begin{array}{ll}
-2 & -2 \\
-2 & -2
\end{array}\right)
$$

Problem 11. Let $x_{1}, x_{2}, \ldots, x_{n}$ be differentiable (real-valued) functions of a single variable t that satisfy

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
\frac{d x_{2}}{d t} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \cdots \\
\frac{d x_{n}}{d t} & =a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}
\end{aligned}
$$

for constants $a_{i j}>0$. Suppose for all i that $x_{i}(t) \rightarrow 0$ as $t \rightarrow \infty$. Are the functions x_{i} necessarily linearly dependent?

Problem 12. Let A be a 4×4 matrix such that each entry of A is either 2 or -1 . Let $d=\operatorname{det}(A)$. Show that d is divisible by 27 .

Problem 13. For any vector v in \mathbb{R}^{n} and permutation σ of $\{1,2, \ldots, n\}$, define $\sigma(v)=$ $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$. What are the possibilities for the dimension of the space spanned by $\sigma(v)$ such that σ is a permutation?
Problem 14. Let $f_{1}, f_{2}, \ldots, f_{n}$ be linearly independent, differentiable functions. Prove that some $n-1$ of their derivatives $f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}$ are independent.

