INVARIANTS AND SEMI-INVARIANTS, ALGEBRAIC IDENTITIES

ROBERT HOUGH

In invariant of a system is a quantity which doesn’t change as the system evolves, like
the total energy or momentum of a classical system. A semi-invariant can change as the
system evolves, but only increases or decreases. Consider the following example.

Example 1. Suppose n markers are given in a row, each with one white side and one
black side. A move consists of selecting a white marker, not one of the outermost ones,
removing it from the row, and flipping the color of its two neighbors. Prove that it is
possible to reach a configuration with only two remaining markers if and only if n — 1 is
not divisible by 3.

Proof. The number of black markers is always even. Hence if two markers remain, either
both are white or both are black. For each white marker, let ¢ be the number of black
markers to its left, and assign the marker the value (—1). Let S be the sum of the
values of the white markers. The value of S modulo 3 is an invariant, as can be checked
by checking the 4 possible arrangments of the adjacent markers (black, white on either
side). Since the initial configuration has S of value n mod 3, and the final configuration
has S = 0 or 2 mod 3 the claim is necessary. To prove sufficiency, check that the solution
is possible if there are 3 or 5 white markers. If there are n > 5 white markers initially,
successively take away the left-most available white marker 3 times. This leaves n — 3
white markers. U

Example 2. Given a triple of numbers, select two of them a,b and replace them with
ath a-b g it possible to change (1,v/2,1 4+ v/2) to (2,2, \%)7
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Proof. The sum of the squares of the numbers is an invariant. This proves that the change
is impossible. O

Example 3. Let z,y, z be distinct real numbers. Prove that

(z—y)% + (y—2)3 + (z — 2)7 £ 0.

Proof. Suppose the contrary. Put a = (z — y)%, b= (y— z)%, c=(z— x)é. From the
identity

a® +b* +c* —3abc = (a + b+ c)(a® + b* + & — ab — be — ca),
it follows that a3 + b3 + ¢ = 3abe, so abec = 0, contradiction. Il

Problem 1. Starting with an ordered quadruple of positive integers, a generalized Eu-
clidean algorithm is applied successively as follows: if the numbers are z,y,u,v and
x > y then the quadruple is replaced by = — y,y,u + v,v. Otherwise, it is replaced by
x,y — x,u,v + u. The algorithm stops when the numbers in the first pair become equal.
Assume that we start with m, n, m,n. Prove that when the algorithm ends the arithmetic
mean of the last two numbers is the least common multiple of m and n.

Problem 2. Four congruent right triangles are given. One can cut one of them along the
altitude, and repeat the operation several times with the newly obtained triangles. Prove
that, no matter how the cuts are performed, we can always find among the triangles a

pair that are congruent.
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Problem 3. Starting with an ordered quadruple of integers, perform repeatedly the oper-
ation

(CL?bu &) d) — (’a’ - b’a |b - C‘? ’C - d’a |d - CLD
Prove that after finitely many steps, the quadruple becomes (0,0, 0,0).

Problem 4. Show that for no positive integer n are both n + 3 and n? + 3n + 3 perfect
cubes.

Problem 5. Prove that any polynomial which takes only non-negative values can be writ-
ten as the sum of the squares of two polynomials.

Problem 6. Prove that for any odd integer n > 5,
n n n n
5n71 - 577,72 5n72 .
(o)t () G ()

Problem 7. Prove that, for infinitely many natural numbers a, n* + a is not prime for any
natural number n.

is not prime.

Problem 8. Factor 5% — 1 into a product of 3 integers, each of which is greater than
5100.

Problem 9. Solve (z — 1) + 23 + (z + 1)5 = 0.
Problem 10. Suppose that n is the sum of two triangular numbers,
a?+a UV*+0b
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Show that 4n + 1 is the sum of two squares. Conversely, show that if 4n + 1 is the sum
of two squares, n is the sum of two triangular numbers.

Problem 11.

a. If a and b are consecutive integers, show that a® + b? + (ab)? is a perfect square.

b. If a = % then a® + b? + ¢ is the square of a rational number.

c. If N differs from the two consecutive squares between which it lies by x and v,
respectively, prove that N — zy is a square.

n =

Problem 12. Let there be given nine lattice points in three-dimensional Euclidean space.
Show that there is a lattice point on the interior of one of the line segments joining two
of these points.

Problem 13. Remove the lower left corner square and the upper right corner square from
an 8 by 8 chess board. Can the board be covered by 2 by 1 dominoes?

Problem 14.
a. Exploit symmetry to expand the product

(2% + yPz + 2%2) (wy? + y2? + 22?).
b. If z +y+ 2z = 0, prove that
(m2+y2+22) (x5+y5+z5) oty 4T
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Problem 15. Verify that the product of four consecutive terms of an arithmetic progression
plus the fourth power of the common difference is always a perfect square.
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Problem 16. Given a sequence of integers x1, T, ..., x,, whose sum is 1, prove that exactly
one of the cyclic shifts
X1y T2y eeey Ty T2y TGy eeey Ty 15 ond) Ty X1y evy Tyl
has all of its partial sums positive.
Problem 17. Show that if a4, ..., a,, are non-negative numbers, then
I+a)1+a) - (1+ay) =1+ (ar...an)")"

Problem 18. Let xi, s, ...,z be real numbers such that the set A = {cos(nmz;) +
cos(nmxy) + - -+ + cos(nmag)|n = 1} is finite. Prove that the z; are all rational.

Problem 19. The positive integers are colored by two colors. Prove that there exists
an infinite sequence of positive integers k1 < ky < k3 < ... with the property that
2k1 < ki + kg < 2ky < ko + k3 < ... all have the same color.



