INEQUALITIES

ROBERT HOUGH

Among the most frequently used inequalities is Cauchy-Schwarz. If v, w are vectors in an inner product space,

 $|\langle v,w\rangle|\leqslant \|v\|\|w\|$

with equality if and only if v and w are collinear. In \mathbb{R}^n , the inequality means that

$$|x_1y_1 + \dots + x_ny_n| \leq (x_1^2 + \dots + x_n^2)^{\frac{1}{2}}(y_1^2 + \dots + y_n^2)^{\frac{1}{2}}.$$

Example 1. We have the power series inequality, for |x| < 1, and $\sum a_k^2 < \infty$,

$$\left|\sum_{k=0}^{\infty} a_k x^k\right| \leqslant \frac{1}{\sqrt{1-x^2}} \left(\sum_{k=0}^{\infty} a_k^2\right)^{\frac{1}{2}}.$$

Proof. The sequences $(x^k)_{k\geq 0}$ and $(a_k)_{k\geq 0}$ are in ℓ^2 , and hence

$$\begin{aligned} |\langle (x^k), (a_k) \rangle| &= \left| \sum_k a_k x^k \right| \\ &\leqslant \| (x^k) \|_2 \| (a_k) \|_2 \\ &= \left(\sum_k x^{2k} \right)^{\frac{1}{2}} \left(\sum_k a_k^2 \right)^{\frac{1}{2}} \\ &= \frac{1}{\sqrt{1 - x^2}} \left(\sum_k a_k^2 \right)^{\frac{1}{2}}. \end{aligned}$$

Another commonly used inequality is Jensen's inequality. Let $f : [a, b] \to \mathbb{R}$ be convex, in the sense that, for $x, y \in [a, b]$, $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$. Then if $0 \leq p_1, ..., p_n$ and $p_1 + \cdots + p_n = 1$, for any $x_1, ..., x_n \in [a, b]$,

$$f\left(\sum_{j} p_{j} x_{j}\right) \leqslant \sum_{j} p_{j} f(x_{j}).$$

Jensen's inequality implies many of the classical inequalities.

Example 2. Jensen's inequality implies Hölder's inequality. For $p \ge 1$, let $||x||_p = \left(\sum_j |x_j|^p\right)^{\frac{1}{p}}$. Let $q = \frac{p}{p-1}$ be the conjugate exponent, so $\frac{1}{p} + \frac{1}{q} = 1$. Then $\left|\sum x_j y_j\right| \le ||x||_p ||y||_q.$

Proof. Assume $x_j \neq 0$ all j, or else drop this term from both sums. Let $w_j = \frac{|x_j|^p}{\|x\|_p^p}$ so that $\sum_j w_j = 1$ and $w_j \ge 0$. Since the function $x \mapsto x^q$ is convex,

$$\left(\sum_{j} \frac{|y_{j}|}{|x_{j}|^{p-1}} w_{j}\right)^{\frac{p-1}{p}} \leq \sum_{j} \left(\frac{|y_{j}|}{|x_{j}|^{p-1}}\right)^{\frac{p}{p-1}} w_{j}$$

Unwrapping this inequality proves that

$$\sum |x_j y_j| \leqslant \|x\|_p \|y\|_q.$$

Problem 1. Find

$$\min_{a,b\in\mathbb{R}}\max(a^2+b,b^2+a).$$

Problem 2. Prove that for all real numbers x,

$$2^x + 3^x - 4^x + 6^x - 9^x \le 1.$$

Problem 3. Find all triples (x, y, z) of real numbers which are simultaneous solutions of the system

$$\frac{4x^2}{4x^2+1} = y, \ \frac{4y^2}{4y^2+1} = z, \ \frac{4z^2}{4z^2+1} = x.$$

Problem 4. Let n be an even positive integer. Prove that for any real number x there are at least $2^{\frac{n}{2}}$ choices of the signs + and - such that

$$\pm x^n \pm x^{n-1} \pm \dots \pm x < \frac{1}{2}.$$

Problem 5. If $a_1 + a_2 + \dots + a_n = n$ prove that $a_1^4 + \dots + a_n^4 \ge n$.

Problem 6. Let $a_1, a_2, ..., a_n$ be distinct real numbers. Find the maximum of

$$a_1 a_{\sigma(1)} + \dots + a_n a_{\sigma(n)}$$

over all permutations σ of $\{1, 2, ..., n\}$.

Problem 7. Prove that the finite sequence $a_0, a_1, ..., a_n$ of positive real numbers is a geometric progession if and only if

$$(a_0a_1 + a_1a_2 + \dots + a_{n-1}a_n)^2 = (a_0^2 + \dots + a_{n-1}^2)(a_1^2 + \dots + a_n^2).$$

Problem 8. Let P(z) be a polynomial with real coefficients whose roots can be covered by a disk of radius R. Prove that for any real number k, the roots of the polynomial nP(z) - kP'(z) can be covered by a disk of radius R + |k|, where n is the degree of P(z)and P'(z) is the derivative.

Problem 9. Let $V_1, ..., V_m$ and $W_1, ..., W_m$ be isometries of \mathbb{R}^n (m, n positive integers). Assume that for all x with $||x|| \leq 1$, $||V_i x - W_i x|| \leq 1$, i = 1, 2, ..., n. Prove that

$$\left\| \left(\prod_{i=1}^{m} V_i\right) x - \left(\prod_{i=1}^{m} W_i\right) x \right\| \leq m,$$

for all x with $||x|| \leq 1$.

Problem 10. Which number is larger,

$$\prod_{n=1}^{25} \left(1 - \frac{n}{365} \right) \quad \text{or} \quad \frac{1}{2}?$$

Problem 11. Let $a_1, a_2, ..., a_n$ be positive real numbers such that $a_1 + a_2 + \cdots + a_n < 1$. Prove that

$$\frac{a_1 a_2 \cdots a_n (1 - (a_1 + \dots + a_n))}{(a_1 + \dots + a_n)(1 - a_1) \cdots (1 - a_n)} \leqslant \frac{1}{n^{n+1}}.$$

Problem 12. Let a, b, c be nonnegative real numbers such that a + b + c = 1. Prove that

$$4(ab+bc+ac) - 9abc \le 1.$$

Problem 13. Let $x_1, x_2, ..., x_n, n \ge 2$, be positive numbers such that $x_1 + x_2 + \cdots + x_n = 1$. Prove that

$$\left(1+\frac{1}{x_1}\right)\left(1+\frac{1}{x_2}\right)\cdots\left(1+\frac{1}{x_n}\right) \ge (n+1)^n$$

Problem 14. Let $x_1, x_2, ..., x_n$ be n real numbers such that $0 < x_j \leq \frac{1}{2}$, for $1 \leq j \leq n$. Prove the inequality

$$\frac{\prod_{j=1}^{n} x_j}{\left(\sum_{j=1}^{n} x_j\right)^n} \leqslant \frac{\prod_{j=1}^{n} (1-x_j)}{\left(\sum_{j=1}^{n} (1-x_j)\right)^n}.$$

Problem 15. What is the maximal value of the expression $\sum_{i < j} x_i x_j$ if $x_1, x_2, ..., x_n$ are non-negative integers whose sum is equal to m?

Problem 16. Prove for each $n \ge 1$,

$$\left(1+\frac{1}{n}\right)^n \leqslant \left(1+\frac{1}{n+1}\right)^{n+1}.$$

Problem 17. Show that $\sin^2 x < \sin x^2$ for $0 < x < \sqrt{\frac{\pi}{2}}$.

Problem 18. Prove that among all convex n-gons inscribed in a circle, the regular n-gon maximizes the area.

Problem 19. Show that if $f : \mathbb{R} \to \mathbb{R}$ has a continuous derivative,

$$\int_{-\infty}^{\infty} |f(x)|^2 dx \le 2 \left(\int_{-\infty}^{\infty} x^2 |f(x)|^2 dx \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} |f'(x)|^2 dx \right)^{\frac{1}{2}}$$

Problem 20. Suppose that $-\infty < \alpha \leq A < \infty$ and $-\infty < \beta \leq B < \infty$ and suppose that functions f and g satisfy the bounds

$$\alpha \leqslant f(x) \leqslant A$$
 and $\beta \leqslant g(x) \leqslant B$

for all $0 \leq x \leq 1$. Show that one has the bound

$$\left| \int_{0}^{1} f(x)g(x)dx - \int_{0}^{1} f(x)dx \int_{0}^{1} g(x)dx \right| \leq \frac{1}{4}(A - \alpha)(B - \beta).$$

Problem 21.

a. Suppose that $-1 \leq x_1 < x_2 < \cdots < x_n \leq 1$, and show that

$$\sum_{1 \le j < k \le n} \frac{1}{x_k - x_j} \ge \frac{1}{8} n^2 \log n.$$

b. Show that for any permutation $\sigma: [n] \to [n]$ one has the bound

$$\max_{1 < k \le n} \sum_{j=1}^{k-1} \frac{1}{|x_{\sigma(k)} - x_{\sigma(j)}|} \ge \frac{1}{8} n \log n.$$