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Let F0 “ 0, F1 “ 1, Fn`1 “ Fn ` Fn´1 be the Fibonacci sequence. Let

fpxq “
8
ÿ

n“0

Fnx
n,

which trivially converges for |x| ă 1
2

(why?). Write fpxq “ x `
ř8

n“2pFn´1 ` Fn´2qx
n “

x` xfpxq ` x2fpxq, so, for |x| ă 1
2
, φ “ 1`

?
5

2

fpxq “
x

1´ x´ x2
“

x

p1´ φxqp1` φ´1xq
“

A

1´ φx
`

B

1` φ´1x
.

Plugging in x “ φ´1 and x “ ´φ obtains A “
φ´1

1`φ´2 “
1?
5
, B “ ´

φ
1`φ2

“ ´ 1?
5
.

Expanding the geometric series, then equating xn coefficients, Fn “
1?
5
pφn ´ p´φq´nq.

The Dyck paths of length 2n are lattice paths from p0, 0q to pn, nq which move only
right and up and are contained on or below the diagonal. Here’s a picture from Wikipedia:

The number of length 2n Dyck paths is the Catalan number Cn.

Theorem 1. The Catalan numbers Cn satisfy C0 “ 1 and, for n ě 0, Cn`1 “
řn
i“0CiCn´i,

and the formula Cn “
p2nn q
n`1

.

Proof. The first move in a Dyck path must move right. Suppose after 2j ` 2 moves it
first touches the diagonal. Then the moves between 1 and 2j ` 1 constitute a Dyck path
of length 2j with the diagonal shifted by one unit right. The remaining moves are a
Dyck path of length 2pn ´ jq. The number of choices for each Dyck path is Cj, Cn´j
respectively, hence the recurrence formula.

To prove the closed formula, define cpxq “
ř8

n“0Cnx
n. Since Cn ď 22n (why?) this

converges for |x| ă 1
4
. It satisfies cpxq “ 1 ` xcpxq2, or cpxq “ 1˘

?
1´4x
2x

. Since cp0q “ 1,

cpxq “ 1´
?
1´4x
2x

. Expand p1´ 4xq
1
2 in Taylor series about 0 to obtain1

p1´ 4xq
1
2 “

8
ÿ

j“0

p´4xqj
ˆ

1
2

j

˙

“

8
ÿ

j“0

p´4xqj

j!

ˆ

1

2

˙j

“ 1´
8
ÿ

j“1

p2xqj

j!

p2j ´ 2q!

2j´1pj ´ 1q!

Hence, 1´p1´4xq
1
2

2x
“
ř8

j“0
p2jq!

j!pj`1q!
xj, so Cn “

p2nn q
n`1

.

�

1xj “ xpx´ 1q ¨ ¨ ¨ px´ j ` 1q
1
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Problem 1. Let pxnqně1 be a sequence of real numbers satisfying

xn`m ď xn ` xm, n,m ě 1.

Show that limnÑ8
xn
n
“ infně1

xn
n

.

Problem 2. Prove that

lim
nÑ8

n2

ż 1
n

0

xx`1dx “
1

2
.

Problem 3. Let ppxq “ x2 ´ 3x ` 2. Show that for any positive integer n there exist
unique numbers an and bn such that the polynomial qnpxq “ xn´ anx´ bn is divisible by
ppxq.

Problem 4. Let pxnqně0 be defined by the recurrence relation xn`1 “ axn ` bxn´1, with
x0 “ 0. Show that the expression x2n´ xn´1xn`1 depends only on b and x1, but not on a.

Problem 5. Prove convergence of the sequence panqně1 defined by

an “ 1`
1

2
`

1

3
` ¨ ¨ ¨ `

1

n
´ lnpn` 1q, n ě 1.

Problem 6. Prove convergence of the sequence

an “

d

1`

c

2`

b

3` ¨ ¨ ¨ `
?
n, n ě 1.

Problem 7. Let 0 ă a ă b be two real numbers. Define the sequences panqn and pbnqn by
a0 “ a, b0 “ b, and

an`1 “
a

anbn, bn`1 “
an ` bn

2
, n ě 0.

Prove that the sequences tanu and tbnu are convergent and have the same limit.

Problem 8. Prove that for n ě 2, the equation xn ` x ´ 1 “ 0 has a unique root in the
interval r0, 1s. If xn denotes this root, prove that the sequence pxnqně1 has a limit and
determine the limit.

Problem 9. Let f : ra, bs Ñ ra, bs be an increasing function. Show that there exists
ξ P ra, bs such that fpξq “ ξ.

Problem 10. Let S “ tx1, x2, ..., xn, ...u be the set of all positive integers that do not
contain the digit 9 in their decimal representation. Prove that

8
ÿ

n“1

1

xn
ă 80.

Problem 11. For a nonnegative integer k, define Skpnq “ 1k ` 2k ` ¨ ¨ ¨ ` nk. Prove that

1`
r´1
ÿ

k“0

ˆ

r

k

˙

Skpnq “ pn` 1qr.

Problem 12. Compute the product
ˆ

1´
4

1

˙ˆ

1´
4

9

˙ˆ

1´
4

25

˙

¨ ¨ ¨ .

Problem 13. Let x be a positive number less than 1. Compute the product
8
ź

n“0

`

1` x2
n˘

.


