SEQUENCES AND SERIES

ROBERT HOUGH

Let $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$ be the Fibonacci sequence. Let

$$
f(x)=\sum_{n=0}^{\infty} F_{n} x^{n}
$$

which trivially converges for $|x|<\frac{1}{2}$ (why?). Write $f(x)=x+\sum_{n=2}^{\infty}\left(F_{n-1}+F_{n-2}\right) x^{n}=$ $x+x f(x)+x^{2} f(x)$, so, for $|x|<\frac{1}{2}, \phi=\frac{1+\sqrt{5}}{2}$

$$
f(x)=\frac{x}{1-x-x^{2}}=\frac{x}{(1-\phi x)\left(1+\phi^{-1} x\right)}=\frac{A}{1-\phi x}+\frac{B}{1+\phi^{-1} x} .
$$

Plugging in $x=\phi^{-1}$ and $x=-\phi$ obtains $A=\frac{\phi^{-1}}{1+\phi^{-2}}=\frac{1}{\sqrt{5}}, B=-\frac{\phi}{1+\phi^{2}}=-\frac{1}{\sqrt{5}}$. Expanding the geometric series, then equating x^{n} coefficients, $F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-(-\phi)^{-n}\right)$.

The Dyck paths of length $2 n$ are lattice paths from $(0,0)$ to (n, n) which move only right and up and are contained on or below the diagonal. Here's a picture from Wikipedia:

The number of length $2 n$ Dyck paths is the Catalan number C_{n}.
Theorem 1. The Catalan numbers C_{n} satisfy $C_{0}=1$ and, for $n \geqslant 0, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$, and the formula $C_{n}=\frac{\binom{2 n}{n}}{n+1}$.
Proof. The first move in a Dyck path must move right. Suppose after $2 j+2$ moves it first touches the diagonal. Then the moves between 1 and $2 j+1$ constitute a Dyck path of length $2 j$ with the diagonal shifted by one unit right. The remaining moves are a Dyck path of length $2(n-j)$. The number of choices for each Dyck path is C_{j}, C_{n-j} respectively, hence the recurrence formula.

To prove the closed formula, define $c(x)=\sum_{n=0}^{\infty} C_{n} x^{n}$. Since $C_{n} \leqslant 2^{2 n}$ (why?) this converges for $|x|<\frac{1}{4}$. It satisfies $c(x)=1+x c(x)^{2}$, or $c(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}$. Since $c(0)=1$, $c(x)=\frac{1-\sqrt{1-4 x}}{2 x}$. Expand $(1-4 x)^{\frac{1}{2}}$ in Taylor series about 0 to obtain ${ }^{1}$

$$
(1-4 x)^{\frac{1}{2}}=\sum_{j=0}^{\infty}(-4 x)^{j}\binom{\frac{1}{2}}{j}=\sum_{j=0}^{\infty} \frac{(-4 x)^{j}}{j!}\left(\frac{1}{2}\right)^{\underline{j}}=1-\sum_{j=1}^{\infty} \frac{(2 x)^{j}}{j!} \frac{(2 j-2)!}{2^{j-1}(j-1)!}
$$

$$
{ }^{1} x^{j}=x(x-1) \cdots(x-j+1)
$$

Problem 1. Let $\left(x_{n}\right)_{n \geqslant 1}$ be a sequence of real numbers satisfying

$$
x_{n+m} \leqslant x_{n}+x_{m}, \quad n, m \geqslant 1 .
$$

Show that $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=\inf _{n \geqslant 1} \frac{x_{n}}{n}$.
Problem 2. Prove that

$$
\lim _{n \rightarrow \infty} n^{2} \int_{0}^{\frac{1}{n}} x^{x+1} d x=\frac{1}{2}
$$

Problem 3. Let $p(x)=x^{2}-3 x+2$. Show that for any positive integer n there exist unique numbers a_{n} and b_{n} such that the polynomial $q_{n}(x)=x^{n}-a_{n} x-b_{n}$ is divisible by $p(x)$.
Problem 4. Let $\left(x_{n}\right)_{n \geqslant 0}$ be defined by the recurrence relation $x_{n+1}=a x_{n}+b x_{n-1}$, with $x_{0}=0$. Show that the expression $x_{n}^{2}-x_{n-1} x_{n+1}$ depends only on b and x_{1}, but not on a. Problem 5. Prove convergence of the sequence $\left(a_{n}\right)_{n \geqslant 1}$ defined by

$$
a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n+1), \quad n \geqslant 1 .
$$

Problem 6. Prove convergence of the sequence

$$
a_{n}=\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{n}}}} \quad n \geqslant 1 .
$$

Problem 7. Let $0<a<b$ be two real numbers. Define the sequences $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ by $a_{0}=a, b_{0}=b$, and

$$
a_{n+1}=\sqrt{a_{n} b_{n}}, \quad b_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad n \geqslant 0
$$

Prove that the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent and have the same limit.
Problem 8. Prove that for $n \geqslant 2$, the equation $x^{n}+x-1=0$ has a unique root in the interval $[0,1]$. If x_{n} denotes this root, prove that the sequence $\left(x_{n}\right)_{n \geqslant 1}$ has a limit and determine the limit.
Problem 9. Let $f:[a, b] \rightarrow[a, b]$ be an increasing function. Show that there exists $\xi \in[a, b]$ such that $f(\xi)=\xi$.
Problem 10. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ be the set of all positive integers that do not contain the digit 9 in their decimal representation. Prove that

$$
\sum_{n=1}^{\infty} \frac{1}{x_{n}}<80
$$

Problem 11. For a nonnegative integer k, define $S_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}$. Prove that

$$
1+\sum_{k=0}^{r-1}\binom{r}{k} S_{k}(n)=(n+1)^{r}
$$

Problem 12. Compute the product

$$
\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right) \cdots .
$$

Problem 13. Let x be a positive number less than 1. Compute the product

$$
\prod_{n=0}^{\infty}\left(1+x^{2^{n}}\right)
$$

