SEQUENCES AND SERIES

ROBERT HOUGH

Let $F_0 = 0, F_1 = 1, F_{n+1} = F_n + F_{n-1}$ be the Fibonacci sequence. Let

$$f(x) = \sum_{n=0}^{\infty} F_n x^n,$$

which trivially converges for $|x| < \frac{1}{2}$ (why?). Write $f(x) = x + \sum_{n=2}^{\infty} (F_{n-1} + F_{n-2})x^n =$ $x + xf(x) + x^2f(x)$, so, for $|x| < \frac{1}{2}$, $\phi = \frac{1+\sqrt{5}}{2}$

$$f(x) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - \phi x)(1 + \phi^{-1}x)} = \frac{A}{1 - \phi x} + \frac{B}{1 + \phi^{-1}x}$$

Plugging in $x = \phi^{-1}$ and $x = -\phi$ obtains $A = \frac{\phi^{-1}}{1+\phi^{-2}} = \frac{1}{\sqrt{5}}, B = -\frac{\phi}{1+\phi^2} = -\frac{1}{\sqrt{5}}$. Expanding the geometric series, then equating x^n coefficients, $F_n = \frac{1}{\sqrt{5}}(\phi^n - (-\phi)^{-n})$.

The Dyck paths of length 2n are lattice paths from (0,0) to (n,n) which move only right and up and are contained on or below the diagonal. Here's a picture from Wikipedia:

The number of length 2n Dyck paths is the Catalan number C_n .

Theorem 1. The Catalan numbers C_n satisfy $C_0 = 1$ and, for $n \ge 0$, $C_{n+1} = \sum_{i=0}^n C_i C_{n-i}$, and the formula $C_n = \frac{\binom{2n}{n}}{n+1}$

Proof. The first move in a Dyck path must move right. Suppose after 2j + 2 moves it first touches the diagonal. Then the moves between 1 and 2j + 1 constitute a Dyck path of length 2j with the diagonal shifted by one unit right. The remaining moves are a Dyck path of length 2(n-j). The number of choices for each Dyck path is C_j , C_{n-j} respectively, hence the recurrence formula.

To prove the closed formula, define $c(x) = \sum_{n=0}^{\infty} C_n x^n$. Since $C_n \leq 2^{2n}$ (why?) this converges for $|x| < \frac{1}{4}$. It satisfies $c(x) = 1 + xc(x)^2$, or $c(x) = \frac{1\pm\sqrt{1-4x}}{2x}$. Since c(0) = 1, $c(x) = \frac{1-\sqrt{1-4x}}{2x}$. Expand $(1-4x)^{\frac{1}{2}}$ in Taylor series about 0 to obtain¹

$$(1-4x)^{\frac{1}{2}} = \sum_{j=0}^{\infty} (-4x)^{j} {\binom{\frac{1}{2}}{j}} = \sum_{j=0}^{\infty} \frac{(-4x)^{j}}{j!} \left(\frac{1}{2}\right)^{j} = 1 - \sum_{j=1}^{\infty} \frac{(2x)^{j}}{j!} \frac{(2j-2)!}{2^{j-1}(j-1)!}$$

e, $\frac{1-(1-4x)^{\frac{1}{2}}}{2x} = \sum_{j=0}^{\infty} \frac{(2j)!}{j!(j+1)!} x^{j}$, so $C_{n} = \frac{\binom{2n}{n}}{n+1}$.

Hence j!(j+1)

 ${}^{1}x^{\underline{j}} = x(x-1)\cdots(x-j+1)$

Problem 1. Let $(x_n)_{n\geq 1}$ be a sequence of real numbers satisfying

$$x_{n+m} \leqslant x_n + x_m, \qquad n, m \ge 1.$$

Show that $\lim_{n\to\infty} \frac{x_n}{n} = \inf_{n \ge 1} \frac{x_n}{n}$.

Problem 2. Prove that

$$\lim_{n \to \infty} n^2 \int_0^{\frac{1}{n}} x^{x+1} dx = \frac{1}{2}.$$

Problem 3. Let $p(x) = x^2 - 3x + 2$. Show that for any positive integer *n* there exist unique numbers a_n and b_n such that the polynomial $q_n(x) = x^n - a_n x - b_n$ is divisible by p(x).

Problem 4. Let $(x_n)_{n\geq 0}$ be defined by the recurrence relation $x_{n+1} = ax_n + bx_{n-1}$, with $x_0 = 0$. Show that the expression $x_n^2 - x_{n-1}x_{n+1}$ depends only on b and x_1 , but not on a. *Problem* 5. Prove convergence of the sequence $(a_n)_{n\geq 1}$ defined by

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1), \qquad n \ge 1.$$

Problem 6. Prove convergence of the sequence

$$a_n = \sqrt{1 + \sqrt{2 + \sqrt{3 + \dots + \sqrt{n}}}}, \qquad n \ge 1.$$

Problem 7. Let 0 < a < b be two real numbers. Define the sequences $(a_n)_n$ and $(b_n)_n$ by $a_0 = a, b_0 = b$, and

$$a_{n+1} = \sqrt{a_n b_n}, \qquad b_{n+1} = \frac{a_n + b_n}{2}, \qquad n \ge 0.$$

Prove that the sequences $\{a_n\}$ and $\{b_n\}$ are convergent and have the same limit.

Problem 8. Prove that for $n \ge 2$, the equation $x^n + x - 1 = 0$ has a unique root in the interval [0, 1]. If x_n denotes this root, prove that the sequence $(x_n)_{n\ge 1}$ has a limit and determine the limit.

Problem 9. Let $f : [a, b] \to [a, b]$ be an increasing function. Show that there exists $\xi \in [a, b]$ such that $f(\xi) = \xi$.

Problem 10. Let $S = \{x_1, x_2, ..., x_n, ...\}$ be the set of all positive integers that do not contain the digit 9 in their decimal representation. Prove that

$$\sum_{n=1}^{\infty} \frac{1}{x_n} < 80.$$

Problem 11. For a nonnegative integer k, define $S_k(n) = 1^k + 2^k + \cdots + n^k$. Prove that

$$1 + \sum_{k=0}^{r-1} \binom{r}{k} S_k(n) = (n+1)^r.$$

Problem 12. Compute the product

$$\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)\cdots$$

Problem 13. Let x be a positive number less than 1. Compute the product

$$\prod_{n=0}^{\infty} \left(1 + x^{2^n}\right).$$