## REAL ANALYSIS

## ROBERT HOUGH

Problem 1. Let $n>1$ be an integer, and let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, $n$-times differentiable on $(a, b)$, with the property that the graph of $f$ has $n+1$ collinear points. Prove that there exists a point $c \in(a, b)$ with the property that $f^{(n)}(c)=0$.

Problem 2. Let $\alpha$ be a real number such that $n^{\alpha}$ is an integer for every positive integer $n$. Prove that $\alpha$ is a nonnegative integer.

Problem 3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers. Find the real number $a$ that minimizes the expression

$$
\left|a-x_{1}\right|+\left|a-x_{2}\right|+\cdots+\left|a-x_{n}\right| .
$$

Problem 4. Let $a_{i}, i=1,2, \ldots, n$ be non-negative numbers with $\sum_{i=1}^{n} a_{i}=1$, and let $0<x_{i} \leqslant 1, i=1,2, \ldots, n$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i}}{1+x_{i}} \leqslant \frac{1}{1+x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}} .
$$

Problem 5. Compute

$$
\lim _{n \rightarrow \infty}\left(\frac{2^{1 / n}}{n+1}+\frac{2^{2 / n}}{n+\frac{1}{2}}+\cdots+\frac{2^{n / n}}{n+\frac{1}{n}}\right) .
$$

Problem 6. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} x f(x) d x=1 .
$$

Prove that

$$
\int_{0}^{1} f^{2}(x) d x \geqslant 4
$$

Problem 7. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers and let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0$. Prove that

$$
\sum_{i, j} x_{i} x_{j}\left|a_{i}-a_{j}\right| \leqslant 0
$$

Prove that equality holds if and only if there exits a partition of the set $\{1,2, \ldots, n\}$ into the disjoint sets $A_{1}, \ldots, A_{k}$ such that if $i$ and $j$ are in the same set, then $a_{i}=a_{j}$ and also $\sum_{j \in A_{i}} x_{j}=0$ for $i=1,2, \ldots, k$.
Problem 8. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a continuous, strictly increasing function with $f(0)=0$. Prove that

$$
\int_{0}^{a} f(x) d x+\int_{0}^{b} f^{-1}(x) d x \geqslant a b
$$

for all positive numbers $a$ and $b$, with equality if and only if $b=f(a)$. Here $f^{-1}$ denotes the inverse of the function $f$.

Problem 9. Prove that any continuously differentiable function $f:[a, b] \rightarrow \mathbb{R}$ for which $f(a)=0$ satisfies the inequality

$$
\int_{a}^{b} f(x)^{2} d x \leqslant(b-a)^{2} \int_{a}^{b} f^{\prime}(x)^{2} d x
$$

Problem 10. For $a>0$, prove that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} \cos a x d x=\sqrt{\pi} e^{-a^{2} / 4}
$$

Problem 11. Prove that for every $0<x<2 \pi$ the following formula is valid:

$$
\frac{\pi-x}{2}=\frac{\sin x}{1}+\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}+\cdots
$$

Hence conclude

$$
\frac{\pi}{4}=\sum_{k=1}^{\infty} \frac{\sin (2 k-1) x}{2 k-1}, \quad x \in(0, \pi)
$$

Problem 12. Let $a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n}=m$ be positive integers. Denote by $b_{k}$ the number of those $a_{i}$ for which $a_{i} \geqslant k$. Prove that

$$
a_{1}+a_{2}+\cdots+a_{n}=b_{1}+\cdots+b_{m}
$$

