POLYNOMIALS

ROBERT HOUGH

A polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ factors into linear factors over \mathbb{C}, $P(x)=a_{n}\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$. The coefficients are elementary symmetric functions in the roots:

$$
\begin{aligned}
-\frac{a_{n-1}}{a_{n}} & =x_{1}+\cdots+x_{n} \\
\frac{a_{n-2}}{a_{n}} & =x_{1} x_{2}+\cdots+x_{n-1} x_{n} \\
\vdots & \\
(-1)^{n} \frac{a_{0}}{a_{n}} & =x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

Theorem 1 (Eisenstein's criterion). Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ with integer coefficients, suppose that there exists a prime number p such that a_{n} is not divisible by p, a_{k} is divisible by p for $k=0,1,2, \ldots, n-1$ and a_{0} is not divisible by p^{2}. Then $P(x)$ is irreducible over $\mathbb{Z}[x]$.
Proof. By contradiction. Suppose $P(x)=Q(x) R(x)$ and both have degree at least 1. Let

$$
\begin{aligned}
& Q(x)=b_{k} x^{k}+b_{k-1} x^{k-1}+\cdots+b_{0} \\
& R(x)=c_{n-k} x^{n-k}+c_{n-k-1} x^{n-k-1}+\cdots+c_{0}
\end{aligned}
$$

Multiplying the polynomials obtains the identities

$$
a_{i}=\sum_{j=0}^{i} b_{j} c_{i-j}, \quad i=0,1,2, \ldots
$$

Since $b_{0} c_{0}=a_{0}$ is divisible by p but not p^{2}, exactly one of b_{0}, c_{0} is divisible by p. Say $p \mid b_{0}$. We show that $p \mid b_{i}$ for all i by induction. If $p \mid b_{0}, b_{1}, \ldots, b_{i-1}$ then

$$
a_{i}=b_{0} c_{i}+b_{1} c_{i-1}+\cdots+b_{i} c_{0} .
$$

All but the $b_{i} c_{0}$ term is divisible by p, so b_{i} is also. Since $p|Q(x), p| P(x)$, a contradiction.
Problem 1. Find a polynomial with integer coefficients that has the zero $2^{\frac{1}{2}}+3^{\frac{1}{3}}$.
Problem 2. Let a, b, c be real numbers. Show that $a \geqslant 0, b \geqslant 0$ and $c \geqslant 0$ if and only if $a+b+c \geqslant 0, a b+b c+c a \geqslant 0$, and $a b c \geqslant 0$.

Problem 3. Determine all polynomials $P(x)$ with real coefficients satisfying $(P(x))^{n}=$ $P\left(x^{n}\right)$ for all $x \in \mathbb{R}$, where $n>1$ is a fixed integer.
Problem 4. Let $a \in \mathbb{C}$ and $n \geqslant 2$. Prove that the polynomial equation $a x^{n}+x+1=0$ has a root of absolute value less than or equal to 2 .

Problem 5. Let $P(z)$ be a polynomial of even degree n, all of whose zeros have absolute value 1 in the complex plane. Set $g(z)=\frac{P(z)}{z^{\frac{n}{2}}}$. Show that all roots of the equation $g^{\prime}(z)=0$ have absolute value 1 .

Problem 6. Prove that the polynomial

$$
P(x)=x^{101}+101 x^{100}+102
$$

is irreducible over $\mathbb{Z}[x]$.
Problem 7. Prove that for every prime number p, the polynomial

$$
P(x)=x^{p-1}+x^{p-2}+\cdots+x+1
$$

is irreducible over $\mathbb{Z}[x]$.
Problem 8. Prove that for every positive integer n, the polynomial $P(x)=x^{2^{n}}+1$ is irreducible over $\mathbb{Z}[x]$.

Problem 9. Prove that for any distinct integers $a_{1}, a_{2}, \ldots, a_{n}$ the polynomial

$$
P(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)-1
$$

cannot be written as a product of two nonconstant polynomials with integer coefficients.
Problem 10. Prove that for every positive integer n,

$$
\tan \frac{\pi}{2 n+1} \tan \frac{2 \pi}{2 n+1} \cdots \tan \frac{n \pi}{2 n+1}=\sqrt{2 n+1} .
$$

Problem 11. Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with complex coefficients, with $a_{0} \neq 0$, and with the property that there exists an m such that

$$
\left|\frac{a_{m}}{a_{0}}\right| \geqslant\binom{ n}{m} .
$$

Prove that $P(x)$ has a zero of absolute value less than 1 .
Problem 12. Compute the $n \times n$ determinant

$$
\operatorname{det}\left(\begin{array}{cccccc}
x & 1 & 0 & 0 & \cdots & 0 \\
1 & 2 x & 1 & 0 & \cdots & 0 \\
0 & 1 & 2 x & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & 0 & \cdots & 2 x
\end{array}\right) .
$$

Problem 13. Given the polynomial $P(x, y, z)$ prove that the polynomial

$$
Q(x, y, z)=P(x, y, z)+P(y, z, x)+P(z, x, y)-P(x, z, y)-P(y, x, z)-P(z, y, x)
$$

is divisible by $(x-y)(y-z)(z-x)$.
Problem 14. Solve the system

$$
\begin{array}{r}
x+y+z=1, \\
x y z=1,
\end{array}
$$

given that x, y, z are complex numbers of absolute value 1 .

