
INVARIANTS
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An invariant of a system is a quantity which remains constant as the system evolves.
Also useful in studying systems are quantities which only increase or decrease as the
system evolves.

A doubly stochastic nˆn matrix has non-negative entries with rows and columns that
each sum to 1. A permutation matrix is an nˆ n 0-1 matrix with one 1 in each row and
column.

Theorem 1 (Birkhoff’s Theorem). Every doubly stochastic n ˆ n matrix is a convex
combination of permutation matrices.

Proof. The property of being doubly stochastic is preserved under convex combinations,
since if M1 and M2 are doubly stochastic, for 0 ď c ď 1, cM1 ` p1 ´ cqM2 still has row
and column sums equal to 1.

We reduce to the following claim: given any doubly stochastic matrix M there is a
permutation matrix P and a δ ą 0 such that M ´ δP has non-negative entries.

We first check that the claim proves the theorem. The sum of the rows and columns of
M´δP are each 1´δ. Choose δ maximal so that the entries of M´δP are non-negative.
If δ “ 1 then M is a permutation matrix. Otherwise, M 1 “ 1

1´δ
pM ´ δP q is again doubly

stochastic and has fewer non-zero entries than M had. Since a doubly stochastic matrix
with n non-zero entries is a permutation matrix, repeating this process at most n2 ´ n
times guarantees we reach a permutation matrix.

To prove the claim, given the matrix M , in each non-zero entry mij assign a variable
xij and let X be the matrix with zero entries where M is 0, and variable xij where M
is non-zero. We claim detpXq “

ř

σPSn
sgnpσq

śn
i“1 xiσpiq ‰ 0. Note that this guarantees

that M ą δP for some permutation matrix P and some δ ą 0. To check the determinant,
suppose for a contradiction that detpXq “ 0 so that some collection of rows are linearly
dependent, say w.l.o.g. r1, ..., rk are a minimal set of dependent rows, that is a1r1` ¨ ¨ ¨`
akrk “ 0 with a1, ..., ak non-zero and no smaller set is dependent. Since the non-zero
entries are variables, this can only occur if the number of columns which are non-zero in
r1, ..., rk is less than k. To see this, verify that r1, ..., rk´1 are l.i. by checking columns
c1, ..., ck´1. Then rk has its entries contained in c1, ..., ck´1 since the remaining variables
outside these columns may be set to 0 in r1, ..., rk´1. Then r1, ..., rk´1 have their entries 0
outside c1, ..., ck´1, since if one did not, one of its entries outside could be set to 0 while all
others are not, so that it does not form part of the linear combination in rk, contradicting
minimality. Summing in columns first, the sum of the entries in r1, ..., rk is at most k´1.
But each row sums to 1, contradiction. �

Problem 1. Place a knight on each square of an 7ˆ 7 chessboard. Is it possible that each
knight can simultaneously make a legal move?

Problem 2. Let n be an odd integer greater than 1, and let A be an n-by-n symmetric
matrix such that each row and each column of A consists of some permutation of the
integers 1, ..., n. Show that each one of the integers 1, ..., n must appear in the main
diagonal of A.
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Problem 3. The entries of a matrix are real numbers of absolute value less than or equal
to 1, and the sum of the elements in each column is 0. Prove that we can permute the
elements of each column in such a way that the sum of the elements in each row will have
absolute value less than or equal to 2.

Problem 4. An ordered triple of numbers is given. It is permitted to perform the following
operation on the triple: to change two of them, say a and b, to pa`bq{

?
2 and pa´bq{

?
2.

Is it possible to obtain the triple p1,
?

2, 1`
?

2q from the triple p2,
?

2, 1{
?

2q using this
operation?

Problem 5. There is a heap of 1001 stones on a table. You are allowed to perform the
following operation: you choose one of the heaps containing more than one stone, throw
away one stone from the heap, then divide it into two smaller (not necessarily equal)
heaps. Is it possible to reach a situation in which all the heaps on the table contain
exactly 3 stones by performing the operation finitely many times.

Problem 6. On an arbitrarily large chessboard consider a generalized knight that can
jump p squares in one direction and q in the other, p, q ą 0. Show that such a knight can
return to its initial position only an even number of jumps.

Problem 7. In the squares of a 3ˆ3 chessboard are written the signs ` and ´ as described
below. Consider the operations in which one is allowed to simultaneously change all signs
in some row or column. Can one change the given configuration to the other one by
applying such operations finitely many times?

+ + -
+ + -
- - +

- - +
+ - -
- - +

Problem 8. A real number is written in each square of an n ˆ n chessboard. We can
perform the operation of changing all signs of the numbers in a row or a column. Prove
that by performing this operation a finite number of times we can produce a new table
for which the sum of each row or column is non-negative.

Problem 9. Several positive integers are written on a blackboard. One can erase any two
distinct integers and write their greatest common divisor and least common multiple on
the board instead. Prove that eventually the numbers will stop changing.

Problem 10. Consider the integer lattice in the plane, with one pebble at the origin. We
play a game in which at each step one pebble is removed from a node of the lattice and
two new pebbles are placed at two neighboring nodes, provided that those nodes are
unoccupied. Prove that at any time there will be a pebble at distance at most 5 from
the origin.


