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To prove a statement P pnq for all positive integers n by induction, prove that P p1q is

true, and prove that P pnq implies P pn` 1q. Hence the statement 1` 2` ...` n “ npn`1q
2

can be checked:

Base case:1 “
1p1` 1q

2
,

Inductive step:1` 2` ...` n “
npn` 1q

2

ñ 1` 2` ...` n` pn` 1q “
npn` 1q

2
` n` 1 “

pn` 1qpn` 2q

2
.

The pigeonhole principle states that a function f : S Ñ T from a finite set S to a
finite set T with |S| ą |T | has some t P T with |f´1ptq| ě 2. For instance, let S be a set
of size 10 contained in t1, 2, ..., 20u. The number of pairs s1 ă s2 from S is

`

10
2

˘

“ 45.
Meanwhile, all sums are between 3 and 39. Hence there are two pairs with the same sum.

Example 1. Prove 2!4!...p2nq! ě ppn` 1q!qn.

Proof. For n “ 1 this reduces to 2! ě p2!q1. Suppose that it holds for n ě 1. Then, by
the inductive assumption,

2!4!...p2n` 2q! ě ppn` 1q!qnp2n` 2q!.

Since ppn`2q!qn`1

ppn`1q!qn
“ pn ` 1q!pn ` 2qn`1 ď pn ` 1q!pn ` 2qpn ` 3q...p2n ` 2q “ p2n ` 2q! it

follows that

2!4!...p2n` 2q! ě ppn` 2q!qn`1,

completing the inductive step. �

Example 2. Prove that no seven positive integers, not exceeding 24, can have all different
subsets have different sums.

Proof. There are 27 ´ 1 “ 127 different non-empty subsets. If we can show that these
subsets have sums in an interval of length less than 127 then the conclusion will follow
from the pigeonhole principle.

If all subsets have a different sum, then each of the integers is distinct. Let 1 ď m1 ă

m2 ă m3 ă m4 ă m5 ă m6 ă m7 ď 24 be the integers. All of the non-empty subset sums
are in the range rm1,m1`¨ ¨ ¨`m7s which has length ď 1`m2`m3`m4`m5`m6`m7.
Note that the six integers m2, ...,m7 have

`

6
2

˘

“ 15 different pairs, each of which must
have a distinct sum. In particular, by the pigeonhole principle, m2`m3 ď m6`m7´14 ď
23`24´14 “ 33. Also, m4`m5 ď 21`22 “ 43. Thus m2` ...`m7 ď 33`43`47 “ 123
which proves the claim. �

Problem 1. Let X be a real number. Prove that among the set X, 2X, ..., pn´ 1qX there
is a number which differs from an integer by at most 1

n
.

Problem 2. Prove that for any x1, ..., xn, n ě 1,

| sinx1| ` ¨ ¨ ¨ ` | sinxn| ` | cospx1 ` ¨ ¨ ¨ ` xnq| ě 1.
1



2 ROBERT HOUGH

Problem 3. Let n be a positive integer. Prove that

1`
1

23
`

1

33
` ¨ ¨ ¨ `

1

n3
ă

3

2
.

Problem 4. Prove that for any n ě 1, a 2n ˆ 2n checkerboard with 1 ˆ 1 corner square
removed can be tiled by pieces of the form below.

Problem 5. Show that every positive integer can be written as the sum of distinct terms
of the Fibonacci sequence.

Problem 6. Prove that every positive integer can be represented as ˘12 ˘ 22 ˘ ¨ ¨ ¨ ˘ n2

for some positive integer n and some choice of signs.

Problem 7. Given 51 distinct positive integers strictly less than 100, prove that some two
of them sum to 99.

Problem 8. Let x1, x2, x3, ... be a sequence of integers such that

1 “ x1 ă x2 ă x3 ă ¨ ¨ ¨ , xn`1 ď 2n

for n “ 1, 2, 3, .... Show that every positive integer k is equal to xi ´ xj for some i and j.

Problem 9. Prove that there is a positive term of the Fibonacci sequence divisible by
1000.

Problem 10. Inside a circle of radius 4 are chosen 61 points. Show that among them there
are two at distance at most

?
2 from each other.

Problem 11. Inside the unit square lie several circles the sum of whose circumferences is
equal to 10. Prove that there exist infinitely many lines each of which intersects at least
four of the circles.


