FUNCTIONAL EQUATIONS

ROBERT HOUGH

Cauchy's functional equation is

$$
f(x+y)=f(x)+f(y),
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$. Substitute $y=0$ to obtain $f(x)=f(x)+f(0)$ so $f(0)=0$. Iterating the equation, for integers $n, f(n x)=n f(x)$, and hence $f\left(\frac{m}{n} x\right)=\frac{m}{n} f(x)$. Hence the value of f at rationals is determined by $f(1), f(q)=q f(1)$. If f is continuous, then $f(x)=x f(1)$ for all real x, which solves Cauchy's equation.
If f is not assumed continuous, by the axiom of choice there exists a basis $\left\{e_{i}\right\}_{i \in I}$ for the real numbers over the rationals. Thus any real number r has a unique representation as

$$
r=q_{1} e_{i_{1}}+\ldots+q_{n} e_{i_{n}}
$$

where $q_{1}, \ldots, q_{n} \in \mathbb{Q}$. Any assignment of $f\left(e_{i}\right)$ on basis elements can be extended by rational-linearity to a function on \mathbb{R} which satisfies Cauchy's equation.

Problem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous nonzero function, satisfying the equation $f(x+y)=f(x) f(y)$. Prove that there exists $c>0$ such that $f(x)=c^{x}$ for all $x \in \mathbb{R}$.

Problem 2. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)=f(x)+f(y)+f(x) f(y) .
$$

Problem 3. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)=\frac{f(x)+f(y)}{1+f(x) f(y)} .
$$

Problem 4. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the condition

$$
f(x y)=x f(y)+y f(x) .
$$

Problem 5. Do there exist continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(g(x))=x^{2}$ and $g(f(x))=x^{3}$ for all $x \in \mathbb{R}$.

Problem 6. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{2}-y^{2}\right)=(x-y)(f(x)+f(y)) .
$$

Problem 7. Find all complex-valued functions of a complex variable satisfying

$$
f(z)+z f(1-z)=1+z .
$$

Problem 8. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(f(x))=x^{2}-2$ for all real numbers x ?

Problem 9. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ subject to the conditions
i. $f(f(f(x)))+2 x=f(3 x)$, for all $x>0$.
ii. $\lim _{x \rightarrow \infty}(f(x)-x)=0$.

Problem 10. Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the functional equation

$$
g(x-y)=g(x) g(y)+f(x) f(y)
$$

for x and y in \mathbb{R}, and that $f(t)=1$ and $g(t)=0$ for some $t \neq 0$. Prove that f and g satisfy

$$
g(x+y)=g(x) g(y)-f(x) f(y)
$$

and

$$
f(x \pm y)=f(x) g(y) \pm g(x) f(y)
$$

for all real x and y.

