ALGEBRA, LINEAR ALGEBRA

ROBERT HOUGH

One can check by induction that the Fibonacci sequence $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ can be obtained as the matrix power $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{n}=\left(\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right)$. By diagonalizing the real symmetric matrix $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ you may obtain a well-known formula for the nth Fibonacci number in terms of the Golden mean $\phi=\frac{1+\sqrt{5}}{2}$.

The van der Monde polynomial of n variables x_{1}, \ldots, x_{n} is

$$
V\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \vdots & & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right) .
$$

From the determinant formula

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) A_{1, \sigma(1)} \ldots A_{n, \sigma(n)}
$$

it follows that V is a polynomial of degree $1+2+\cdots+n-1=\frac{(n-1) n}{2}$. By subtracting column i from column j, and noting that $x_{j}^{k}-x_{i}^{k}$ has a factor of $x_{j}-x_{i}$, conclude that $V\left(x_{1}, \ldots, x_{n}\right)$ is divisible by $\prod_{i<j}\left(x_{j}-x_{i}\right)$. Hence $V\left(x_{1}, \ldots, x_{n}\right)=c \prod_{i<j}\left(x_{j}-x_{i}\right)$. We have $c=1$ by matching the coefficient on $x_{2} x_{3}^{2} x_{4}^{3} \cdots x_{n}^{n-1}$.

Over \mathbb{C}, any matrix $n \times n$ matrix A is similar to an upper triangular matrix in Jordan normal form: for some invertible $n \times n$ matrix C,

$$
C^{-1} A C=\left(\begin{array}{ccccc}
J_{1} & 0 & 0 & \cdots & 0 \\
0 & J_{2} & 0 & \cdots & 0 \\
0 & 0 & J_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & J_{k}
\end{array}\right)
$$

Each J_{i} is called a Jordan block and has the form

$$
J_{i}=\left(\begin{array}{ccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & & 1 \\
0 & 0 & 0 & \cdots & \lambda_{i}
\end{array}\right)
$$

Here λ_{i} is a generalized eigenvalue. The characteristic polynomial of A is $\operatorname{det}(\lambda I-A)=$ $\prod_{i}\left(\lambda-\lambda_{i}\right)^{\operatorname{dim} J_{i}}$.

The trace of an $n \times n$ matrix A is $\operatorname{tr} A=\sum_{i} A_{i i}$. This satisfies $\operatorname{tr} A B=\operatorname{tr} B A$, and is the sum of the generalized eigenvalues counted with multiplicity.
Problem 1. Let M be an $n \times n$ complex matrix. Prove that there exist Hermitian matrices A and B such that $M=A+i B$. (A matrix X is called Hermitian if $\overline{X^{t}}=X$).
Problem 2. Do there exist $n \times n$ matrices A and B such $A B-B A=I_{n}$.

Problem 3. Compute the nth power of the $n \times n$ matrix $J_{n}(\lambda)=\left(\begin{array}{ccccc}\lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \lambda\end{array}\right)$.
Problem 4. Let $\left(F_{n}\right)_{n}$ be the Fibonacci sequence. Prove that $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$, for all $n \geqslant 1$.

Problem 6. Compute the determinant of the $n \times n$ matrix $A=\left(a_{i j}\right)_{i j}$, where

$$
a_{i j}= \begin{cases}(-1)^{|i-j|} & i \neq j \\ 2 & i=j\end{cases}
$$

Problem 7. Prove the formula for the determinant of a circulant matrix:

$$
\operatorname{det}\left(\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{n} & x_{1} & x_{2} & \cdots & x_{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{3} & x_{4} & x_{5} & \cdots & x_{2} \\
x_{2} & x_{3} & x_{4} & \cdots & x_{1}
\end{array}\right)=\prod_{j=0}^{n-1}\left(\sum_{k=1}^{n} \zeta^{j k} x_{k}\right)
$$

where $\zeta=e^{2 \pi i / n}$.
Problem 8. Let $\alpha=\frac{\pi}{n+1}, n>2$. Prove that the $n \times n$ matrix

$$
\left(\begin{array}{cccc}
\sin \alpha & \sin 2 \alpha & \cdots & \sin n \alpha \\
\sin 2 \alpha & \sin 4 \alpha & \cdots & \sin 2 n \alpha \\
\vdots & \vdots & \ddots & \vdots \\
\sin n \alpha & \sin 2 n \alpha & \cdots & \sin n^{2} \alpha
\end{array}\right)
$$

is invertible.
Problem 9. Denote by $M_{n}(\mathbb{R})$ the set of $n \times n$ matrices with real entries and let f : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ be a linear function. Prove that there exists a unique matrix $C \in M_{n}(\mathbb{R})$ such that $f(A)=\operatorname{tr}(A C)$ for all $A \in M_{n}(\mathbb{R})$. In addition, if $f(A B)=f(B A)$ for all matrices A and B, prove that there exists $\lambda \in \mathbb{R}$ such that $f(A)=\lambda \operatorname{tr} A$ for any A.
Problem 10. For an $n \times n$ matrix A denote by $\phi_{k}(A)$ the symmetric polynomial in the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A, \phi_{k}(A)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}, k=1,2, \ldots, n$. Thus $\phi_{1}(A)$ is the trace and $\phi_{n}(A)$ is the determinant. Prove that for two $n \times n$ matrices A and $B, \phi_{k}(A B)=\phi_{k}(B A)$.
Problem 11. Assume that a and b are elements of a group with identity element e satisfying $\left(a b a^{-1}\right)^{n}=e$ for some positive integer n. Prove that $b^{n}=e$.
Problem 12. Given Γ a finite multiplicative group of matrices with complex entries, denote by M the sum of the matrices in Γ. Prove that the determinant of M is an integer.
Problem 13. Let $\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ be a set of integers. Show that there is an $m \times m$ matrix A with integers coefficients such that the matrices $A+k_{j} I$, for $1 \leqslant j \leqslant m$, are invertible and their inverses also have integer coefficients. (I is the $m \times m$ identity matrix).

