Math 639: Lecture 6

Rates of convergence, local limit theorem, Poisson approximation

Bob Hough

February 14, 2017

Bob Hough Math 639: Lecture 6 February 14, 2017 1 / 50

The Lindeberg-Feller Theorem

Recall the Lindeberg-Feller CLT.

Theorem

For each n let $X_{m,n}$, $1 \le m \le n$ be independent random variables with $E[X_{n,m}] = 0$. Suppose

- ② For all $\epsilon > 0$, $\lim_{n \to \infty} \sum_{m=1}^n \mathbb{E}\left[|X_{n,m}|^2 \mathbf{1}(|X_{n,m}| > \epsilon)\right] = 0$.

Then $S_n = X_{n,1} + \cdots + X_{n,n} \Rightarrow \sigma \eta$ as $n \to \infty$.

2 / 50

Bob Hough Math 639: Lecture 6 February 14, 2017

Record values

- Let $Y_1, Y_2, ...$ be independent with $\operatorname{Prob}(Y_m = 1) = \frac{1}{m}$, $\operatorname{Prob}(Y_m = 0) = 1 \frac{1}{m}$.
- Set $S_n = Y_1 + \cdots + Y_n$. Then $E[S_n] \sim \log n$ and $Var[S_n] \sim \log n$.
- For n > 1 set $X_{n,m} = \frac{Y_m \frac{1}{m}}{(\log n)^{\frac{1}{2}}}$.
- We have $\mathsf{E}[X_{n,m}] = 0$ and $\sum_{m=1}^n \mathsf{E}[X_{n,m}^2] \to 1$, and for any $\epsilon > 0$

$$\sum_{m=1}^{n} \mathbb{E}\left[|X_{n,m}|^{2} \mathbf{1}(|X_{n,m}| > \epsilon)\right] \to 0$$

since $|X_{n,m}| \le \epsilon$ once $\frac{1}{(\log n)^{\frac{1}{2}}} < \epsilon$.

• By the CLT, $(\log n)^{-\frac{1}{2}} \left(S_n - \sum_{m=1}^n \frac{1}{m} \right) \Rightarrow \eta$.

Kolmogorov's three series theorem

Recall the statement of Kolmogorov's three series theorem.

Theorem

Let $X_1, X_2, ...$ be independent, let A > 0, and let $Y_m = X_m \mathbf{1}(|X_m| \le A)$. In order that $\sum_{n=1}^{\infty} X_n$ converges a.s. it is necessary and sufficient that

Kolmogorov's three series theorem

Proof.

- The first condition is necessary since otherwise, $|X_n| > A$ i.o. with probability 1 by Borel-Cantelli.
- If 1 holds, but 3 does not, then consider

$$c_n = \sum_{m=1}^n \mathsf{Var}(Y_m), \qquad X_{n,m} = \frac{(Y_m - \mathsf{E}[Y_m])}{c_n^{\frac{1}{2}}}.$$

One has $\mathsf{E}[X_{n,m}] = \mathsf{0}$, $\sum_{m=1}^n \mathsf{E}[X_{n,m}^2] = 1$ and, for any $\epsilon > 0$

$$\sum_{m=1}^{n} \mathsf{E}\left[|X_{n,m}|^{2} \mathbf{1}(|X_{n,m}| > \epsilon)\right] \to 0$$

since the sum is 0 once $\frac{2A}{c_n^2} < \epsilon$.

Kolmogorov's three series theorem

Proof.

• The above conditions imply $S_n = X_{n,1} + \cdots + X_{n,n}$ satisfies $S_n \Rightarrow \eta$. But if $\sum_{m=1}^{\infty} X_m$ converges a.s. then $\sum_{m=1}^{\infty} Y_m$ exists, so

$$T_n = \frac{1}{c_n^{\frac{1}{2}}} \sum_{m=1}^n Y_m \Rightarrow 0.$$

This implies that $S_n - T_n \Rightarrow \eta$, but this is impossible, since the difference is the sum of the means, hence deterministic.

• If 1 and 3 hold, then $\sum_n (Y_n - \mathsf{E}[Y_n])$ converges a.s. If $\sum_n X_n$ converges, then $\sum_n Y_n$ converges, whence $\sum_n \mathsf{E}[Y_n]$ converges.

Infinite variance

Example

- Let $X_1, X_2, ...$ be i.i.d. and have $Prob(X_1 > x) = Prob(X_1 < -x)$ and $Prob(|X_1| > x) = x^{-2}$ for $x \ge 1$.
- Let $S_n = X_1 + \cdots + X_n$, and set

$$Y_{n,m} = X_m \mathbf{1} \left(|X_m| \leqslant n^{\frac{1}{2}} \log \log n \right).$$

We have

$$\sum_{m=1}^{n} \operatorname{Prob}(Y_{n,m} \neq X_{m}) \leqslant n \operatorname{Prob}\left(|X_{1}| > n^{\frac{1}{2}} \log \log n\right) = \frac{1}{(\log \log n)^{2}}$$

tends to 0 as $n \to \infty$.

Infinite variance

Example

• Let $c_n = n^{\frac{1}{2}} \log \log n$. We have

$$E\left[Y_{n,m}^2\right] = \int_1^\infty 2x \operatorname{Prob}(|Y_{n,m}| > x) dx$$
$$= \int_1^{c_n} 2x \left[\frac{1}{x^2} - \frac{1}{c_n^2}\right] dx$$
$$= \log n + 2 \log \log \log n - 1.$$

Thus $\sum_{m=1}^{n} E[Y_{n,m}^2] \sim n \log n$.

• Since $\frac{Y_{n,m}}{\sqrt{n\log n}} \to 0$ in L^{∞} , the Lindeberg-Feller Theorem implies $\frac{1}{\sqrt{n\log n}} \sum_{m=1}^{n} Y_{n,m} \Rightarrow \eta$.

8 / 50

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_i] = 0$, $E[X_i^2] = \sigma^2$, and $E[|X_i|^3] = \rho < \infty$. If $F_n(x)$ is the distribution of $\frac{X_1 + \cdots + X_n}{\sigma \sqrt{n}}$ and N the standard normal distribution function

$$|F_n(x) - N(x)| \leq \frac{3\rho}{\sigma^3 \sqrt{n}}.$$

9 / 50

Bob Hough Math 639: Lecture 6 February 14, 2017

Set $h_L(x) = \frac{1-\cos Lx}{\pi Lx^2}$ with distribution H_L . This has characteristic function $\omega_L(\theta) = \left(1 - \left|\frac{\theta}{L}\right|\right)^+$.

Lemma (Smoothing lemma)

Let F and G be distribution functions, with $G'(x) \leq \lambda < \infty$. Let

$$\Delta(x) = F(x) - G(x), \ \eta = \sup |\Delta(x)|, \ \Delta_L = \Delta * H_L, \ and$$

$$\eta_L = \sup |\Delta_L(x)|$$
. Then

$$\eta_L \geqslant \frac{\eta}{2} - \frac{12\lambda}{\pi L}.$$

Proof.

- Δ goes to 0 at $\pm \infty$, G is continuous, F is a density function, so there is x_0 satisfying $\Delta(x_0)=\eta$ or $\Delta(x_0^-)=-\eta$. We'll treat the case $\Delta(x_0)=\eta$ as the other case may be handled similarly.
- The derivative condition implies in s > 0, $\Delta(x_0 + s) \ge \eta \lambda s$.
- Let $\delta = \frac{\eta}{2\lambda}$, and $t = x_0 + \delta$

$$\Delta(t-x)\geqslant\left\{egin{array}{ll} rac{\eta}{2}+\lambda x & |x|\leqslant\delta \ -\eta & ext{otherwise} \end{array}
ight.$$

Proof.

- Use $\int_{|x|>\delta} h_L(x) dx \leqslant 2 \int_{\delta}^{\infty} \frac{2dx}{\pi L x^2} = \frac{4}{\pi L \delta}$.
- Use $\int_{|x| \leqslant \delta} x h_L(x) dx = 0$ to find $\eta_L \geqslant \Delta_L(t)$ and

$$\Delta_L(t) = \int \Delta(t-x) H_L(x) dx \geqslant \frac{\eta}{2} \left(1 - \frac{4}{\pi L \delta} \right) - \frac{4\eta}{\pi L \delta} = \frac{\eta}{2} - \frac{12\lambda}{\pi L}.$$

Lemma

Let K_1 and K_2 be distribution functions with mean 0, whose characteristic functions κ_i are integrable. Then,

$$K_1(x) - K_2(x) = \frac{1}{2\pi} \int e^{-itx} \frac{\kappa_1(t) - \kappa_2(t)}{it} dt.$$

Proof.

• By the integrability, the distributions have densities

$$k_i(y) = rac{1}{2\pi} \int e^{-ity} \kappa_i(t) dt.$$

• Set $\Delta K = K_1 - K_2$ and integrate to find

$$\Delta K(x) - \Delta K(a) = rac{1}{2\pi} \int_a^x \int e^{-ity} (\kappa_1(t) - \kappa_2(t)) dt dy$$

$$= rac{1}{2\pi} \int (e^{-ita} - e^{-itx}) rac{\kappa_1(t) - \kappa_2(t)}{it} dt.$$

10/10/12/12/2

Proof.

- Since the distribution functions are mean 0, $\frac{1-\kappa_i(t)}{t} \to 0$ as $t \to 0$, so $\frac{\kappa_1(t)-\kappa_2(t)}{t}$ is bounded and continuous.
- Let $a \to -\infty$ and use Riemann-Lebesgue to conclude

$$\Delta K(x) = \frac{1}{2\pi} \int -e^{-itx} \frac{\kappa_1(t) - \kappa_2(t)}{it} dt.$$

15 / 50

Bob Hough Math 639: Lecture 6 February 14, 2017

Proof of the Berry-Esseen Theorem.

- Both sides of the inequality scale with σ , so assume $\sigma = 1$.
- Write F for F_n and G for the distribution function of the Gaussian.
- Let ϕ_F and ϕ_G be the characteristic functions of F and G. Write $F_L = F * H_L$ and $G_L = G * H_L$.
- By the previous lemma

$$|F_L(x) - G_L(x)| \leq \frac{1}{2\pi} \int |\phi_F(t)\omega_L(t) - \phi_G(t)\omega_L(t)| \frac{dt}{|t|}$$

$$\leq \frac{1}{2\pi} \int_{-L}^{L} |\phi_F(t) - \phi_G(t)| \frac{dt}{|t|}.$$

Proof of the Berry-Esseen Theorem.

• By the smoothing lemma,

$$|F(x) - G(x)| \le \frac{1}{\pi} \int_{-L}^{L} |\phi_F(\theta) - \phi_G(\theta)| \frac{d\theta}{|\theta|} + \frac{24\lambda}{\pi L}.$$

Here
$$\lambda = \sup_x G'(x) = G'(0) = (2\pi)^{-\frac{1}{2}} < \frac{2}{5}$$
.

• Use $\left|\phi(t)-1+\frac{t^2}{2}\right|\leqslant
ho \frac{|t|^3}{6}$ and

$$|\alpha^{n} - \beta^{n}| \leq n|\alpha - \beta| \max(|\alpha|, |\beta|)^{n-1}.$$

Proof of the Berry-Esseen Theorem.

• Let $L = \frac{4\sqrt{n}}{3\rho}$. Then for $|\theta| \leqslant L$,

$$\left|\phi\left(\frac{\theta}{\sqrt{n}}\right)\right|\leqslant 1-\frac{\theta^2}{2n}+\frac{\rho|\theta|^3}{6n^{\frac{3}{2}}}\leqslant \exp\left(-\frac{5\theta^2}{18n}\right).$$

- Bound $\left|\phi\left(\frac{\theta}{\sqrt{n}}\right)^n \exp\left(-\frac{\theta^2}{2}\right)\right|$ by choosing $\alpha = \phi\left(\frac{\theta}{\sqrt{n}}\right)$, $\beta = \exp\left(-\frac{\theta^2}{2n}\right)$, $\gamma = \exp\left(-\frac{5\theta^2}{18n}\right)$.
- One can bound

$$|n|\alpha - \beta| \leqslant \frac{\rho |\theta|^3}{6n^{\frac{1}{2}}} + \frac{\theta^4}{8n}, \qquad \gamma^{n-1} \leqslant \exp\left(-\frac{\theta^2}{4}\right) \ (n \geqslant 10).$$

18 / 50

Proof of the Berry-Esseen Theorem.

Putting things together,

$$\frac{1}{|\theta|} \left| \phi^n \left(\frac{\theta}{\sqrt{n}} \right) - \exp\left(-\frac{\theta^2}{2} \right) \right| \leqslant \exp\left(-\frac{\theta^2}{4} \right) \left\{ \frac{\rho \theta^2}{6n^{\frac{1}{2}}} + \frac{|\theta|^3}{8n} \right\}
\leqslant \frac{1}{L} \exp\left(-\frac{\theta^2}{4} \right) \left\{ \frac{2\theta^2}{9} + \frac{|\theta|^3}{18} \right\}.$$

Hence

$$\pi L |F_n(x) - \eta(x)| \le \int \exp\left(-\frac{\theta^2}{4}\right) \left\{\frac{2\theta^2}{9} + \frac{|\theta|^3}{18}\right\} d\theta + 9.6.$$

• The remainder of the proof amounts to calculator work.

Definition

A random variable X has a *lattice distribution* if there are constants b and h > 0 so that

$$\mathsf{Prob}(X \in b + h\mathbb{Z}) = 1.$$

The largest *h* for which this holds is called the *span* of the distribution.

Bob Hough Math 639: Lecture 6

Theorem

Let $\phi(t) = E[e^{itX}]$. One of the following possibilities holds.

- **1** $|\phi(t)| < 1$ for all $t \neq 0$.
- ② There is $\lambda > 0$ so that $|\phi(\lambda)| = 1$ and $|\phi(t)| < 1$ for $0 < t < \lambda$. In this case X has a lattice distribution with span $\frac{2\pi}{\lambda}$.
- $|\phi(t)| = 1$ for all t. In this case, X = b a.s. for some b.

Proof.

- We checked several lectures ago that if there is $\lambda > 0$ such that $|\phi(\lambda)| = 1$ then X is supported in $b + \frac{2\pi}{\lambda} \mathbb{Z}$ for some b.
- Suppose there is a sequence $t_n \downarrow 0$ such that $|\phi(t_n)| = 1$. Choose $b_n \in \left(-\frac{\pi}{t_n}, \frac{\pi}{t_n}\right]$ such that $\operatorname{Prob}(X \in b_n + \frac{2\pi}{t_n}\mathbb{Z}) = 1$.
- It follows that $\operatorname{Prob}(X=b_n) \to 1$. This is possible only if $b_n=b$ and $\operatorname{Prob}(X=b)=1$.

Definition

A random variable X is *arithmetic* if there is h > 0 such that

 $Prob(X \in h\mathbb{Z}) = 1.$

Theorem

Let $X_1, X_2, ...$ be i.i.d., $E[X_i] = 0$, $E[X_i^2] = \sigma^2$, and lattice distributed, satisfying $Prob(X_1 \in b + h\mathbb{Z}) = 1$ for some span h > 0. Set $S_n = X_1 + \cdots + X_n$. We put

$$p_n(x) = \operatorname{Prob}\left(\frac{S_n}{\sqrt{n}} = x\right), \qquad \eta(x) = \frac{\exp\left(-\frac{x^2}{2\sigma^2}\right)}{\sqrt{2\pi}\sigma}.$$

As $n \to \infty$,

$$\sup_{x \in \left\{\frac{nb+hz}{\sqrt{n}} : z \in \mathbb{Z}\right\}} \left| \frac{n^{\frac{1}{2}}}{h} p_n(x) - \eta(x) \right| \to 0.$$

◆ロ > ← 個 > ← 差 > ← 差 > 一差 の へ ○

Proof.

• Let $\phi(t) = \mathsf{E}[e^{itX}]$,

$$p_n(x) = \operatorname{Prob}\left(\frac{S_n}{\sqrt{n}} = x\right) = \frac{h}{2\pi\sqrt{n}} \int_{-\frac{\pi\sqrt{n}}{h}}^{\frac{\pi\sqrt{n}}{h}} e^{-itx} \phi^n\left(\frac{t}{\sqrt{n}}\right) dt.$$

- $\eta(x) = \frac{1}{2\pi} \int e^{-itx} \exp\left(-\frac{\sigma^2 t^2}{2}\right) dt$.
- We have

$$\left| \frac{n^{\frac{1}{2}}}{h} \rho_n(x) - \eta(x) \right| \leqslant \frac{1}{2\pi} \int_{-\frac{\pi\sqrt{n}}{h}}^{\frac{\pi\sqrt{n}}{h}} \left| \phi^n \left(\frac{t}{\sqrt{n}} \right) - \exp\left(-\frac{\sigma^2 t^2}{2} \right) \right| dt$$

$$+ \frac{1}{\pi} \int_{\frac{\pi\sqrt{n}}{h}}^{\infty} \exp\left(-\frac{\sigma^2 t^2}{2} \right) dt.$$

February 14, 2017

Proof.

• For any fixed A,

$$\int_{-A}^{A} \left| \phi^{n} \left(\frac{t}{\sqrt{n}} \right) - \exp \left(-\frac{\sigma^{2} t^{2}}{2} \right) \right| dt \to 0$$

as $n \to \infty$ by bounded convergence.

• The remaining integral against $\exp\left(-\frac{\sigma^2t^2}{2}\right)$ tends to 0 as a function of increasing A, so it remains to bound the integral against ϕ^n .

Proof.

Use

$$|\phi(u)| \leqslant \left|1 - \frac{\sigma^2 u^2}{2}\right| + \frac{u^2}{2} \operatorname{E}\left[\min\left(|u||X|^3, 6|X|^2\right)\right].$$

Thus there is $\delta > 0$ such that for $|u| < \delta$, $|\phi(u)| < \exp\left(-\frac{\sigma^2 u^2}{4}\right)$, and so as $A \to \infty$,

$$\int_{A\leqslant |t|\leqslant \delta\sqrt{n}}\left|\phi^n\left(\frac{t}{\sqrt{n}}\right)\right|dt\to 0.$$

• For $\delta \leqslant |u| \leqslant \frac{\pi}{h}$, $|\phi|$ is bounded away from 1, so the remainder of the integral is exponentially small in n.

Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_i] = 0$, $E[X_i^2] = \sigma^2 \in (0, \infty)$, and having a common characteristic function $\phi(t)$ that has $|\phi(t)| < 1$ for all $t \neq 0$. Let $S_n = X_1 + \cdots + X_n$ and $\eta(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$. For a < b, as $n \to \infty$, if $\frac{X_n}{\sqrt{n}} \to x$, then

$$\sqrt{n} \operatorname{Prob} (S_n \in (x_n + a, x_n + b)) \to (b - a) \eta(x).$$

Proof.

- Let ψ be a Schwartz class function, and write $\hat{\psi}(t) = \int_{-\infty}^{\infty} \psi(x) e^{itx} dx$ for it's Fourier transform, which we assume to be of compact support, say in [-T,T], T>0. Such a function is said to be *band-limited*.
- Denote $\psi_{x_n}(x) = \psi(x x_n)$ the translated function. We have

$$\hat{\psi}_{x_n}(t) = e^{itx_n}\hat{\psi}(t).$$

• Write $\phi(t) = E[e^{itX_i}]$. By Plancherel,

$$\mathsf{E}\left[\psi_{\mathsf{x}_n}(\mathcal{S}_n)\right] = \frac{1}{2\pi} \int_{-\tau}^{\tau} \phi^n(t) e^{-it\mathsf{x}_n} \overline{\hat{\psi}(t)} dt.$$

Proof.

• Write $\phi(t) = E[e^{itX_i}]$. By Plancherel,

$$\begin{split} \mathsf{E}\left[\psi_{\mathsf{x}_n}(S_n)\right] &= \frac{1}{2\pi} \int_{-T}^T \exp\left(-\frac{n\sigma^2 t^2}{2}\right) e^{-it\mathsf{x}_n} \overline{\hat{\psi}(t)} dt \\ &+ O\left(\int_{-T}^T \left|\phi^n(t) - \exp\left(-\frac{n\sigma^2 t^2}{2}\right)\right| dt\right). \end{split}$$

• The error term is $o\left(\frac{1}{\sqrt{n}}\right)$ by splitting the integral into three pieces as in the previous theorem.

Proof.

• The main term is

$$\int \frac{e^{-\frac{x^2}{2n\sigma^2}}}{\sqrt{2\pi n\sigma^2}} \psi_{x_n}(x) dx.$$

 This suffices for the theorem, since the main term of the theorem is asymptotic to

$$\int_{x_n+a}^{x_n+b} \frac{e^{-\frac{x^2}{2n\sigma^2}}}{\sqrt{2\pi n\sigma^2}} dx$$

and the indicator function of [a, b] can be approximated in L^1 from above and below by Schwartz functions whose Fourier Transform has compact support.

Recall the $\mathsf{Poisson}(\lambda)$ distribution has $\mathsf{Prob}(X=n) = e^{-\lambda} \frac{\lambda^n}{n!}$.

Theorem

For each n, let $X_{n,m}$, $1 \le m \le n$ be independent random variables with $\operatorname{Prob}(X_{n,m}=1)=p_{n,m}$, $\operatorname{Prob}(X_{n,m}=0)=1-p_{n,m}$. Suppose

- $ax_{1 \leqslant m \leqslant n} p_{n,m} \to 0.$

If $S_n = X_{n,1} + \cdots + X_{n,n}$ then $S_n \Rightarrow Z$ where Z is $Poisson(\lambda)$.

Proof.

- $\phi_{n,m}(t) = \mathbb{E}\left[\exp(itX_{n,m})\right] = (1 p_{n,m}) + p_{n,m}e^{it}$.
- $E\left[e^{itS_n}\right] = \prod_{m=1}^n \left(1 + p_{n,m}(e^{it} 1)\right)$.
- Note $|\exp(p(e^{it}-1))|=\exp(p(\Re(e^{it}-1)))\leqslant 1,\ |1+p(e^{it}-1)|\leqslant 1.$ Thus

$$\begin{split} & \left| \exp\left(\sum_{m=1}^{n} p_{n,m}(e^{it} - 1) \right) - \prod_{m=1}^{n} (1 + p_{n,m}(e^{it} - 1)) \right| \\ & \leqslant \sum_{m=1}^{n} \left| \exp(p_{n,m}(e^{it} - 1)) - (1 + p_{n,m}(e^{it} - 1)) \right| \\ & \leqslant \sum_{m=1}^{n} p_{n,m}^{2} \left| e^{it} - 1 \right|^{2} \leqslant 4 \left(\max_{1 \leqslant m \leqslant n} p_{n,m} \right) \sum_{m=1}^{n} p_{n,m} \to 0. \end{split}$$

1 L P 1 D P 7

Since $\sum_{m=1}^n p_{n,m} \to \lambda$, $\mathsf{E}\left[\exp(itS_n)\right] \to \exp(\lambda(e^{it}-1))$. Since the characteristic function converges pointwise to the characteristic function of $\mathsf{Poisson}(\lambda)$, the convergence in distribution follows.

Example

- Suppose we roll two dice 36 times. The number of times that 'snake eyes' (two ones) occurs has distribution which is approximately Poisson(1).
- Let $\xi_{n,1}, \xi_{n,2}, ..., \xi_{n,n}$ be independent and uniformly distributed over [-n,n]. Let $X_{n,m}$ indicate the event that $\xi_{n,m} \in (a,b)$, which has probability $\frac{b-a}{2n}$. The number of events, $S_n = \sum_m X_{n,m}$ converges to a Poisson distribution of parameter $\frac{b-a}{2}$.

35 / 50

Definition

The total variation distance between two probability measures μ and ν on a countable set S is

$$\|\mu - \nu\| = \frac{1}{2} \sum_{z} |\mu(z) - \nu(z)| = \sup_{A \subset S} |\mu(A) - \nu(A)|.$$

36 / 50

Bob Hough Math 639: Lecture 6 February 14, 2017

Lemma

If $\mu_1 \times \mu_2$ denotes the product measure on $\mathbb{Z} \times \mathbb{Z}$ that has $(\mu_1 \times \mu_2)(x, y) = \mu_1(x)\mu_2(y)$, then

$$\|\mu_1 \times \mu_2 - \nu_1 \times \nu_2\| \le \|\mu_1 - \nu_1\| + \|\mu_2 - \nu_2\|.$$

Bob Hough

Proof.

$$\begin{split} &2\|\mu_1\times\mu_2-\nu_1\times\nu_2\|=\sum_{x,y}|\mu_1(x)\mu_2(y)-\nu_1(x)\nu_2(y)|\\ &\leqslant \sum_{x,y}|\mu_1(x)\mu_2(y)-\nu_1(x)\mu_2(y)|+\sum_{x,y}|\nu_1(x)\mu_2(y)-\nu_1(x)\nu_2(y)|\\ &=\sum_y\mu_2(y)\sum_x|\mu_1(x)-\nu_1(x)|+\sum_x\nu_1(x)\sum_y|\mu_2(y)-\nu_2(y)|\\ &=2\|\mu_1-\nu_1\|+2\|\mu_2-\nu_2\|. \end{split}$$

38 / 50

Lemma

If $\mu_1 * \mu_2$ denotes the convolution of μ_1 and μ_2 , that is,

$$\mu_1 * \mu_2(x) = \sum_y \mu_1(x - y)\mu_2(y)$$

then $\|\mu_1 * \mu_2 - \nu_1 * \nu_2\| \le \|\mu_1 \times \mu_2 - \nu_1 \times \nu_2\|$.

Proof.

$$2\|\mu_1 * \mu_2 - \nu_1 * \nu_2\| = \sum_{x} \left| \sum_{y} \mu_1(x - y) \mu_2(y) - \sum_{y} \nu_1(x - y) \nu_2(y) \right|$$

$$\leq \sum_{x} \sum_{y} |\mu_1(x - y) \mu_2(y) - \nu_1(x - y) \nu_2(y)|$$

$$= 2\|\mu_1 \times \mu_2 - \nu_1 \times \nu_2\|.$$

Lemma

Let μ be the measure with $\mu(1)=p$ and $\mu(0)=1-p$. Let ν be a Poisson distribution with mean p. Then $\|\mu-\nu\|\leqslant p^2$.

Proof.

$$2\|\mu - \nu\| = |\mu(0) - \nu(0)| + |\mu(1) - \nu(1)| + \sum_{n \ge 2} \nu(n)$$
$$= |1 - p - e^{-p}| + |p - pe^{-p}| + 1 - e^{-p}(1 + p).$$

Since $1 - x \le e^{-x} \le 1$ for $x \ge 0$, one obtains

$$=2p(1-e^{-p})\leqslant 2p^2.$$

Theorem

For each n, let $X_{n,m}$, $1 \le m \le n$ be independent random variables with $\operatorname{Prob}(X_{n,m}=1) = p_{n,m}$, $\operatorname{Prob}(X_{n,m}=0) = 1 - p_{n,m}$. Suppose

- $\bullet \ \sum_{m=1}^n p_{n,m} = \lambda$
- $\max_{1 \leq m \leq n} p_{n,m} \to 0$.

Let $S_n = X_{n,1} + \cdots + X_{n,n}$ have distribution μ_n , and let ν have distribution Poisson (λ) . Then

$$\|\mu_n - \nu\| \leqslant \sum_{m=1}^n p_{n,m}^2.$$

Proof.

- Let $\mu_{n,m}$ be the distribution of $X_{n,m}$, and let $\nu_{n,m}$ be Poisson $(p_{n,m})$.
- Thus $\nu_n = *_{m=1}^n \nu_{n,m} \sim \mathsf{Poisson}(\lambda)$ and $\sum_{m=1}^n X_{n,m}$ has distribution $*_{m=1}^n \mu_{n,m}$.
- $\|\mu_n \nu_n\| \le \sum_{m=1}^n \|\mu_{n,m} \nu_{n,m}\| \le \sum_{m=1}^n p_{n,m}^2$.

Fixed points

Example

Let π be a random permutation of $\{1,2,...,n\}$, let $X_m=1$ if $\pi(m)=m$ and 0 otherwise, and let $S_n=X_1+\cdots+X_n$ be the number of fixed points. Let $A_m=\{X_m=1\}$. By inclusion-exclusion,

$$\operatorname{Prob}\left(\bigcup_{m=1}^{n} A_{m}\right) = \sum_{m} \operatorname{Prob}(A_{m}) - \sum_{\ell < m} \operatorname{Prob}(A_{\ell} \cap A_{m}) + \sum_{k < \ell < m} \operatorname{Prob}(A_{k} \cap A_{\ell} \cap A_{m}) - \cdots$$

$$= n \cdot \frac{1}{n} - \binom{n}{2} \frac{(n-2)!}{n!} + \binom{n}{3} \frac{(n-3)!}{n!} - \cdots$$

45 / 50

Bob Hough Math 639: Lecture 6 February 14, 2017

Fixed points

Example

We have $\operatorname{Prob}(S_n=0)=\sum_{m=0}^n \frac{(-1)^m}{m!}$ so

$$|\operatorname{Prob}(S_n = 0) - e^{-1}| = \left| \sum_{m=n+1}^{\infty} \frac{(-1)^m}{m!} \right|$$

 $\leq \frac{1}{(n+1)!} \sum_{k=0}^{\infty} (n+2)^{-k} = \frac{1}{(n+1)!} \left(1 - \frac{1}{n+2} \right)^{-1}.$

We can now compute

$$\begin{aligned} \mathsf{Prob}(S_n = k) &= \binom{n}{k} \frac{\mathsf{Prob}(S_{n-k} = 0)}{n(n-1)\cdots(n-k+1)} \\ &= \frac{\mathsf{Prob}(S_{n-k} = 0)}{k!} \to \frac{e^{-1}}{k!}. \end{aligned}$$

Occupancy problem

Theorem

Suppose r balls are placed at random in n boxes. If $ne^{-\frac{r}{n}} \to \lambda \in [0, \infty)$ the number of empty boxes approaches $Poisson(\lambda)$ as $n \to \infty$.

47 / 50

Occupancy problem

Proof.

- Set $p_m(r, n)$ for the probability of m empty boxes on r tosses into n boxes.
- Since Prob(boxes $i_1, i_2, ..., i_k$ empty) = $\left(1 \frac{k}{n}\right)^r$, by inclusion-exclusion

$$p_0(r,n) = \sum_{k=0}^n (-1)^k \binom{n}{k} \left(1 - \frac{k}{n}\right)^r.$$

One obtains $p_0(r,n) \sim e^{-\lambda}$ by using $\left(1 - \frac{k}{n}\right)^r \sim \frac{\lambda^k}{n^k}$ for $k \leqslant K$, a large fixed constant, and $\left(1 - \frac{k}{n}\right)^r \lesssim \frac{\lambda^k}{n^k}$, k > K.

Occupancy problem

Proof.

• By choosing the boxes to be empty

$$p_m(r,n) = \binom{n}{m} \left(1 - \frac{m}{n}\right)^r p_0(r,n-m) \sim \frac{\lambda^m}{m!} p_0(r,n-m) \sim e^{-\lambda} \frac{\lambda^m}{m!}.$$

Coupon collector's problem

Example

Let $X_1, X_2, ...$ be i.i.d. uniform on $\{1, 2, ..., n\}$ and $T_n = \inf\{m : \{X_1, ..., X_m\} = \{1, 2, ..., n\}\}$. Since $T_n \le m$ if and only if m balls fill up all n boxes, it follows

$$\operatorname{Prob}(T_n - n \log n \leqslant nx) = p_0(n \log n + nx, n) \to \exp(-e^{-x}).$$

This follows from the previous discussion, since if $r = n \log n + nx$ then $ne^{-\frac{r}{n}} \rightarrow e^{-x}$.

50 / 50