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The Lindeberg-Feller Theorem

Recall the Lindeberg-Feller CLT.

Theorem

For each n let X, 0, 1 < m < n be independent random variables with
E[Xn,m] = 0. Suppose

o Zm 1 [X2 ] - 02 >0
Q Foralle>0, limpoo Ym_q E[|Xnm[*1(| Xn,m| > €)] = 0.
Then S, = Xp1+4 -4+ Xpp = 0on as n — 0.
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Record values

Let Y1, Y2, ... be independent with Prob(Y,, =1) = %
Prob(Y, =0)=1- 1.

(]

@ Set S, = Y1+ -+ Y, Then E[S,] ~ logn and Var[S,] ~ log n.
_1
@ Forn>1set X, m = Y'"i"’l
(logn)2
o We have E[X, m] =0and ;7 _, E[X2,] — 1, and for any ¢ > 0

> E[XnmlP1(| Xnm| > €)] — 0

m=1

1
(og n)?
By the CLT, (logn)™2 (5 —>n )=

m=1m

since | X, m| < € once <e.

Bob Hough Math 639: Lecture 6 February 14, 2017 3 /50



Kolmogorov's three series theorem

Recall the statement of Kolmogorov's three series theorem.

Theorem

Let Xq, X2, ... be independent, let A > 0, and let Y, = X 1(| Xm| < A). In
order that > 2, X, converges a.s. it is necessary and sufficient that

Q >, Prob(|X,| > A) < w0
@ > E[Y,] converges
Q >, Var(Y,) < w.
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Kolmogorov's three series theorem

Proof.

@ The first condition is necessary since otherwise, |X,| > A i.o. with
probability 1 by Borel-Cantelli.

@ If 1 holds, but 3 does not, then consider

Cp = Z Var(Ypm), Xo.m = (Y"’_—E[Y’"])
cq

One has E[Xp,m] =0, Y7 _; E[X2,] =1 and, for any € > 0

> E[IXnmlP1(|Xnm| > €)] — 0

m=1

since the sum is 0 once 2A <ee.

c,,2
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Kolmogorov's three series theorem

Proof.
@ The above conditions imply S, = X1 + -
But if >,-_; Xy, converges a.s. then > - _,

This implies that S,, — T, = 7, but this is impossible, since the
difference is the sum of the means, hence deterministic.

o If 1 and 3 hold, then > (Y, — E[Y},]) converges as. If >} X,
converges, then ). Y, converges, whence »  E[Y}] converges.

Y., exists, so

:NM—" =

-+ Xp,n satisfies S, = 7.
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Infinite variance

Example

@ Let Xj, Xy, ... be i.i.d. and have Prob(X; > x) = Prob(X; < —x) and
Prob(|X1| > x) = x72 for x > 1.

o Let S, = X1+ -+ X,, and set
Yn,m = Xml (|Xm| < n% Ioglog n) 5

@ We have

1

Z Prob(Yn,m # Xm) < nProb (]X1| > > log log n) = Tealm i

m=1

tends to 0 as n — 0.
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Infinite variance

Example

1
o Let ¢, = n2loglogn. We have

o0
E[YZ ] = L 2x Prob(| Yo, m| > x)dx

cn 1 1
= f 2X [2 — 2:| dX
1 X Cn
= logn+ 2logloglogn — 1.
Thus Y0 L E[YZ,,] ~ nlogn.

n,m

n,m

@ Since \/::IOW — 0 in L™, the Lindeberg-Feller Theorem implies

1 n
JileEr 2im=1 Ynm = 1.
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The Berry-Esseen Theorem

Theorem

Let X1, Xa, ... be i.i.d. with E[X;] =0, E[X?] = 02, and
E[|IXi’] = p < 0. If Fy(x) is the distribution of X222%s and N the
standard normal distribution function

Fa) = NG| < =
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The Berry-Esseen Theorem

Set hy(x) = % with distribution H;. This has characteristic function

wi(0) = (1= 2]
Lemma (Smoothing lemma)

Let F and G be distribution functions, with G'(x) < A\ < 0. Let
A(x) = F(x) — G(x), n =sup|A(x)|, AL = A= H;, and
nL = sup |Ar(x)]. Then

n 12X
2l
i -
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The Berry-Esseen Theorem

Proof.

@ A goes to 0 at +00, G is continuous, F is a density function, so there
is Xg satisfying A(xp) = n or A(xy ) = —7n. We'll treat the case
A(xp) = n as the other case may be handled similarly.

@ The derivative condition implies in s > 0, A(xp +5) = n — As.

° Let5=%,and t=xp+9

2+ Ax Ix| <6
—n otherwise

A(t—x)?{
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The Berry-Esseen Theorem

Proof.
0 2dx

o Use S|x|>5 hi(x 5 wxZ = w15
e Use S|X|<5th( )dx =0 to find i, > A(t) and

Ag(t) = JA(t — x)Hi(x)dx > g (1 B %)

wls

12\
ml

An o
2

O]

v
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The Berry-Esseen Theorem

Lemma

Let K1 and K, be distribution functions with mean 0, whose characteristic
functions k; are integrable. Then,

Ki(x) — Kolx) = — j e—ffodt.

~2r
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The Berry-Esseen Theorem

Proof.
@ By the integrability, the distributions have densities

1

ki(y) = — J e W k;(t)dt.

2

@ Set AK = K1 — K> and integrate to find

AK(x) — A 27T f [ 7 ma(0) = na(e)aeay

—ita —itx Kl(t) - ’{’2( )
— =~ dt.
27r e ) it
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The Berry-Esseen Theorem

Proof.
1—r(t)

@ Since the distribution functions are mean 0, —~~<2 — Q as t — 0, so

t
K1(t)—r2(t)
it

@ Let a - —o0 and use Riemann-Lebesgue to conclude

AK(x) = % f —e—ffXMdt.

is bounded and continuous.
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The Berry-Esseen Theorem

Proof of the Berry-Esseen Theorem.
@ Both sides of the inequality scale with o, so assume o = 1.
@ Write F for F,, and G for the distribution function of the Gaussian.

@ Let ¢F and ¢ be the characteristic functions of F and G. Write
FL:F*HLand GLZG*HL.

@ By the previous lemma
|FL(x) — GL(x)| < 1f|¢,:(t)wL(t) — gbG(t)wL(t)uﬁ
f 6r(8) — de(t)| &

[
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The Berry-Esseen Theorem

Proof of the Berry-Esseen Theorem.
@ By the smoothing lemma,

L
IF(x) — G(x)| < EJL |9 (0) — ¢G(9)|% * %

™

($118)

Here A = sup, G'(x) = G'(0) = (2m)~ 2 <

o Use |o(t) — 1+ % |t| and

" — 87| < nla — B max(|af, |8])"

February 14, 2017
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The Berry-Esseen Theorem

Proof of the Berry-Esseen Theorem.

o let L= 43?. Then for |0] < L,

0 02 plof 562
—)<1-— < —27 ).
‘¢ (ﬁ)‘ 2n oot - P\ 1en

S ‘¢ (%)n — exp (—%)’ by choosing a = ¢ (%)
8= o0 (—57). v = e (~57).

@ One can bound

3 4
nla— B < '0|9|1 4 97”’ A" < exp (-) (n > 10).

6n2 8

Ol

V.
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Proof of the Berry-Esseen Theorem.
@ Putting things together,

0] NG PAUT2)|S%P U4 ) L6t " 8n
o () (2 0P
ST U4 ) 9 Tis [
@ Hence

2 2 2 3
7L |Fa(x) = n(x)| < fexp (—i) {g + ﬂ}d9+9.6.

@ The remainder of the proof amounts to calculator work.
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Lattice distributed measures

Definition
A random variable X has a lattice distribution if there are constants b and

h > 0 so that
Prob(X € b+ hZ) = 1.

The largest h for which this holds is called the span of the distribution.
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Lattice distributed measures

Theorem
Let ¢(t) = E[e™]. One of the following possibilities holds.
Q |o(t)] <1 forall t # 0.

@ There is A > 0 so that |p(\)| =1 and |p(t)] <1 for0O <t <. In
this case X has a lattice distribution with span 27”

@ |o(t)| =1 for all t. In this case, X = b a.s. for some b.
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Lattice distributed measures

Proof.
@ We checked several lectures ago that if there is A > 0 such that
|¢(A)| = 1 then X is supported in b + 27”2 for some b.
@ Suppose there is a sequence t, | 0 such that |¢(t,)| = 1. Choose
b€ (—£, £ | such that Prob(X € b, + 2Z) = 1.

o It follows that Prob(X = b,) — 1. This is possible only if b, = b and
Prob(X = b) = 1.

Ol

V.
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Lattice distributed measures

Definition

A random variable X is arithmetic if there is h > 0 such that
Prob(X € hZ) = 1.
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Local limit theorem, lattice case

Theorem

Let X1, Xz, ... beiid., E[X;] =0, E[X,-2] = 02, and lattice distributed,
satisfying Prob(X1 € b+ hZ) = 1 for some span h > 0. Set
Sn=X1+ -+ X,. Weput

prlx) = Prob (2 = x) . (x) = d )

\/n V2mo
As n — o0,
n2
sup TPH(X) —n(x)| — 0.
xe{%:zeZ}
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Local limit theorem, lattice case

Proof.
o Let ¢(t) = E[e™X],

m/n
5” h h —itx ;n t
pn(X) = Prob (ﬁ = X) = 27[_\/3 J‘ﬂ'f e Qb <\/ﬁ> dt.

2 242
o n(x) = 5 fe ™ exp <*%> dt.

@ We have

1
n2

" pn(x) — ()| <

v
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Local limit theorem, lattice case

Proof.
@ For any fixed A,

Al (ot o242
|l (ﬁ) e (‘z)"’“ 0

as n — oo by bounded convergence.

.. . . 2.2 .
@ The remaining integral against exp (—%) tends to 0 as a function

of increasing A, so it remains to bound the integral against ¢".

Ol

v
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Local limit theorem, lattice case

Proof.

e Use

o2u?

2

2

N “? E [min (Ju]|X|3,6/X?)] .

ol < 1 -

Thus there is § > 0 such that for |u| < 9, |¢(u)| < exp (—"2”2), and

4
¢ ()| dt -0
- 0.
\/n
@ For § < |u| < %, |¢] is bounded away from 1, so the remainder of the
integral is exponentially small in n.

so as A — o0,

JA<t|<5\/E

O

v
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Non-lattice measures

Theorem

Let X1, Xa, ... be i.i.d. with E[X;] = 0, E[X?] = 02 € (0,0), and having a

common characteristic function ¢(t) that has |p(t)| <1 for all t # 0. Let
Sp=Xi+ -+ X, and n(x) = (27702)7% exp (— = ) Fora < b, as

202 ) °
n — oo, if%—»x, then

V/nProb (S, € (x, + a,x, + b)) — (b — a)n(x).
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Non-lattice measures

Proof.

o Let ) be a Schwartz class function, and write ¢)(t) = Siooo P(x)e™ dx
for it's Fourier transform, which we assume to be of compact support,
say in [—T,T], T > 0. Such a function is said to be band-limited.

@ Denote 1), (x) = 1(x — x,) the translated function. We have

Pra () = €P73)(2).
o Write ¢(t) = E[e™X/]. By Plancherel,

£l (5] = o [ 6700 0
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Non-lattice measures

Proof.
o Write ¢(t) = E[e™™]. By Plancherel,

T 2.2 P
E [’QZJXH(S,,)] = ;’;TJ exp (_ nU2t ) e—ltxnw(t)dt

-7
" (t) — exp (— na22t2> ‘ dt) .

i

@ The error term is o (%) by splitting the integral into three pieces as

in the previous theorem.

Ol

v
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Non-lattice measures

Proof.

@ The main term is

X2

e 2nc2

W@%( x)dx

@ This suffices for the theorem, since the main term of the theorem is
asymptotic to
Xn+b e_z:?

——dx
xo+a V2mno?

and the indicator function of [a, b] can be approximated in L! from
above and below by Schwartz functions whose Fourier Transform has
compact support.

Ol
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Poisson convergence

Recall the Poisson()\) distribution has Prob(X = n) = e™*2]

nl -
Theorem
For each n, let X, m, 1 < m < n be independent random variables with
Prob(Xn,m = 1) = pnm, Prob(X,m =0) =1 — ppm. Suppose
Q@ > _1Pnm— A€ (0,00).
@ maxi<msn Pnm — 0.

If Sn = Xp1 + -+ + Xp,n then S, = Z where Z is Poisson(\).
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Poisson convergence

Proof.
0 ¢nm(t) = E[exp(itXnm)] = (1 — pom) + Pnme™.
o E [eitS,,] -1 _, (1 + pn,m(eit . 1)) .

o Note |exp(p(e” —1))| = exp(p(R(e* —1))) < 1, [1 + p(e —1)| < 1.
Thus

n n
exp (Z Pnm(e" — 1)) — | [ @+ pam(e — 1))‘
m=1 m=1
n

< Z ’exp(Pn,m(eit -1)-(1+ pmm(eit - 1))’
m=1

n n
: 2
< Z pﬁm‘e’t—ll <4 max pom Z Pn.m — 0.
1 ’ 1<m<n

m=1
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Poisson convergence

Since 37 1 pnm — A, E[exp(itS,)] — exp(A(et — 1)). Since the
characteristic function converges pointwise to the characteristic function of
Poisson(A), the convergence in distribution follows.
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Poisson convergence

Example

@ Suppose we roll two dice 36 times. The number of times that ‘snake
eyes' (two ones) occurs has distribution which is approximately
Poisson(1).

o Let £,1,&n2, ..., &n,n be independent and uniformly distributed over
[—n, n]. Let X, m indicate the event that &, m € (a, b), which has
probability %. The number of events, S, = > X, m converges to a

Poisson distribution of parameter bga.
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Poisson convergence

Definition
The total variation distance between two probability measures 1 and v on
a countable set S is

lp = vl = %Z [(z) —v(2)| = sup |u(A) = v(A)].
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Poisson convergence

Lemma

If p1 X po denotes the product measure on 7 x 7 that has
(11 x p2)(x,y) = pa(x)p2(y), then

|1 x po = w1 x v < s — | + |2 = 2
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Poisson convergence

Proof.

2p1 x p2 — 11 x vaf = . | (x)p2(y) — va(x)va(y)]
X,y

< (3 p2(y) — va(x |+Z|V1 y) —n(x)ra(y)|
X,y

= Y p2(y) D 1 (x) — v (x \+ZV1 Z!m — ()|
y X

= 2|p1 — 1| + 2|2 — v2].
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Poisson convergence

Lemma

If 11 * po denotes the convolution of uy and pp, that is,
pa o p2(x) = pa(x — y)p2(y)
y

then |pq * po — v1 * v < |1 X 2 — v1 X 1a|.
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Poisson convergence

Proof.

2”#1*#2—V1*V2H—ZZM1X— y)u2(y ZVIX_ va(y)
< ZZIM (x — y)pa(y) — V1(X—y)V2(y)|
Xy

=2|pu1 x p2 —v1 X 1.
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Poisson convergence

Lemma

Let u be the measure with 11(1) = p and u(0) = 1 — p. Let v be a Poisson
distribution with mean p. Then | — v|| < p?.
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Poisson convergence

Proof.

2 — v = |(0) = v(0)] + (1) = w(1)] + Y v(n)

n=2
=1l-p—eP|+|p—peP|+1-eP(1+p).

Since 1 — x < e * <1 for x > 0, one obtains

=2p(1 — e P) < 2p°
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Poisson convergence

Theorem

For each n, let X, m, 1 < m < n be independent random variables with
Prob(Xp,m = 1) = pnm, Prob(X,m =0) =1 — ppm. Suppose

@ anzl pn,m =\

@ maxi<ms<n Pn,m — 0.

Let Sy = Xp1+ - - + Xp,n have distribution p,, and let v have distribution
Poisson(A). Then

n
ltin =V < D Phm-
m=1
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Poisson convergence

Proof.
o Let jipm be the distribution of X, m, and let v, », be Poisson(pp m).
® Thus vp = %7 _1vpm ~ Poisson()) and > _; X, m has distribution
K m—1Hn,m-
n

® [pn = val < Xy lttnm — vaml < 3oy PR

Bob Hough Math 639: Lecture 6 February 14, 2017 44 / 50



Fixed points

Example

Let 7 be a random permutation of {1,2,...,n}, let X, = 1 if 71(m) = m
and 0 otherwise, and let S,, = X1 + - -- + X, be the number of fixed
points. Let Ap, = {X,, = 1}. By inclusion-exclusion,

Prob ( U Am> =} Prob(An,) — > Prob(A; N An)
m=1 m

f<m

+ ). Prob(AxnArn Apy) — -

k<f<m

() ()
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Fixed points

Example

We have Prob(S, =0) =>" U o

m=0 m!

| Prob(S, = 0) — e_1] =

m=n-+1
Q0 1 (1 1 )—1
k=0 (n +1)! n+2
We can now compute
n Prob(S,_x = 0)
Prob(S, = k) =
rob(Sn = k) (k) nn—1)---(n—k+1)
_ Prob(S,_x=0) e!
- K| R
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Occupancy problem

Theorem

Suppose r balls are placed at random in n boxes. If ne"7 — X\ € [0, 0)
the number of empty boxes approaches Poisson(\) as n — 0.
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Occupancy problem

Proof.

@ Set py(r, n) for the probability of m empty boxes on r tosses into n
boxes.

o Since Prob(boxes i1, o, ..., i empty) = (1 — £)", by
inclusion-exclusion

k=0

One obtains po(r, n) ~ e by using (1 — X)" ~ o for k< K, a
large fixed constant, and (1 — %)r < 2‘—: k> K.
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Occupancy problem

Proof.
@ By choosing the boxes to be empty
n my’ Am \A"
Doy 1) = (m) (1= ) porun—m) ~ 2 po(r.n—m) ~ AT
O
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Coupon collector’s problem

Example

Let X1, X, ... be i.i.d. uniform on {1,2, ..., n} and

Tp =inf{m:{Xq,..., Xm} ={1,2,...,n}}. Since T, < mif and only if m
balls fill up all n boxes, it follows

Prob(T, — nlogn < nx) = po(nlogn+ nx,n) — exp(—e™ ™).

This follows from the previous discussion, since if r = nlog n + nx then

i
ne n — e %,
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