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The binomial distribution

Let X3, Xo, ... be i.i.d. random variables,
1
Prob(X; =1) = 5 Prob(X; = —1) = -.

The sum S, = X1 + Xo + - - - + X, is the nth step of simple random walk.
From the binomial theorem one obtains

2
Prob(Ss, = 2k) = (n :k> o2,
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The binomial distribution

As n — oo, the binomial distribution approximates the density of a normal
distribution pointwise in the following sense.

Theorem

If\;—;n—>xasn—>oothen

Prob(Sa = 2k) ~ i/ﬁ
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The binomial distribution

Proof.

@ Stirling's formula gives the asymptotic

n

n! ~ n"e""V2mn

as n — o0.

@ Hence as |n+ k| — oo,
2n 1\ (2n)!
n+k) (n+ k) (n— k)

(2n)2" 2n
T (n= k) k(n+ k)"k\ 2x(n + k)(n — k)’

Bob Hough Math 639: Lecture 5 February 7, 2017 4 /57



The binomial distribution

Proof.

o If % — 0 as n increases,

2

2n -2 1
n-+ k N/ TN
1

o If k = o(n3) then this is ~ %, as wanted.

Bob Hough Math 639: Lecture 5 February 7, 2017

5 /57



The De Moivre-Laplace Theorem

Theorem (The De Moivre-Laplace Theorem)
If a < b then as m — oo,

S /" 2
Probla< —=<b| - — e 2 dx.
( _\/m_ ) V2 Ja
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The De Moivre-Laplace Theorem

Proof.
@ Assume m = 2n is even, as the odd case may be handled similarly.
o Calculate
Prob <a < Sm. < b> = Z Prob(Sz, = m).
=5 =
m&[av/2n,b\/2n]N2Z

@ Inserting the asymptotic evaluation, this is

N
|
N

1 . b 2
2\ 2 e 2 e 2
~(2) % ~ [
n V2T a V21
xE[a,b]ﬂ\/%Z
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Convergence in distribution

Definition

A sequence of random variables X, is said to converge in distribution to
Xoo, written X, = X, if for each interval (a, b] for which a and b are
points of continuity of the distribution function of X,

Prob(X, € (a, b]) — Prob(Xx € (a, b]). )
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Geometric distribution

Example

Let X, be the number of trials needed to get a success in a sequence of
independent trials of success probability p. This has a geometric
distribution, Prob(X, > n) = (1 — p)"~! for n=1,2,3,.... Asp |0,

Prob(pX, > x) — e, x > 0.
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Birthday problem

Example
Let X1, X, ... be independent and uniformly distributed on {1,2,..., N},
and let Ty = min{n: X, = X;,, some m < n}. Hence
Prob( T, >n)—ﬁ I—L_l
N — il N )

and, for x > 0,

T 2
Prob (’Y > X> — exp (—X> .
N> 2

February 7, 2017

10 / 57



Convergence of maxima

Example

Let X1, Xo, ... be independent with distribution F, and let

M, = maxm<np Xm. M, has distribution function Prob(M, < x) = F(x)".
In particular, if X; has an exponential distribution, so that F(x) =1—e™*,
then

Prob(M, —logn < y) — exp(—e™”), n— oo.

This is the Gumbel distribution. )
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Weak convergence

Theorem

If F, = Fs then there are random variables Y,, 1 < n < co with
distribution F, so that Y, — Y, a.s.
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Weak convergence

Proof.

@ We build the random variables on (0, 1) with Borel sets and Lebesgue
measure.

@ Define Y,(x) = sup{y : Fa(y) < x}, and similarly Y.

e Define a, = sup{y : Foo(y) < x}, bx = inf{y : Fs(y) > x}.

o Let Qp = {x: ax = bx}. We have Q\ Qq is countable, since (ax, by)
contains a rational number. We check that Y,(x) — Yoo(x) for
x € Q.
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Weak convergence

Proof.
@ Recall that, for x € Qo, sup{y : Fo(y) < x} = inf{y : Fo(y) > x}.
e Let y < F1(x) be a point of continuity. Since x € Qo, F(y) < x,
and so F,(y) < x for all n sufficiently large. It follows that
F1(x) >y and

n

liminf Fl(x) > F2(x).

e Arguing similarly, limsup, . F, 1(x) < F1(x).
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Weak convergence

Theorem

Xn = X if and only if for every bounded continuous function g we have
E[g(Xn)] = E[g(X)].
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Weak convergence

Proof.

@ First suppose X, = X,. Choose Y, equal in distribution to X, and
converging a.s.. Then bounded convergence gives

Elg(Xn)] = E[g(Yn)] — Elg(Yoo)] = E[g(Xe0)].

e Now suppose E[g(X,)] — E[g(Xso)] for all bounded continuous g.
Let
1 y < x
goy)=4q O yZzx+e
linear x<y<x+e
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Weak convergence

Proof.

o Calculate

lim sup Prob(X,, < x) < lim sup E[gx.(Xh)]

n—o00 n—o00

= E[gx,e(Xoo)] < PrOb(Xoo < x4 6).

Letting € | 0 gives limsup,_,., Prob(X, < x) < Prob(Xs < x).

@ To obtain the other direction use gy_ .
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Continuous mapping theorem

Theorem (Continuous mapping theorem)

Let g be a measurable function and Dy = {x : g discontinuous at x}. If
Xn = Xso and Prob(Xs € Dg) = 0 then g(X,) = g(X). If, in addition, g
is bounded, then E[g(X,)] — E[g(X)]-
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Continuous mapping theorem

Proof.

o Let Y, equal to X, in distribution, with Y, — Y, a.s.

e If f is continuous, then Dfog C Dg so Prob( Y. € Dfog) =0 and
f(g(Yn)) = f(g(Y)) as.

o If f is bounded, then E[f(g(Ys))] — E[f(g(Ys))] so
g(Xn) = g(Xx)-

o We have g(Y,) — g(Y) a.s., so that for bounded g,
Elg(Yn)] = Elg(Yoo)]:
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Convergence in distribution

Theorem

The following statements are equivalent:
QO X, = Xx
@ For all open sets G, liminf,_, Prob(X, € G) > Prob(X, € G).
@ For all closed sets K, limsup,,_,., Prob(X, € K) < Prob(Xx € K).

Q For all sets A with Prob(Xy € 0A) =0,
limp—o0 Prob(X, € A) = Prob(X, € A).
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Convergence in distribution

Proof.
@ 1 = 2: Let Y, have the same distribution as X,, and satisfy Y,, — Y

a.s. Then liminf15(Y,) > 16(Y), so Fatou implies
liminf Prob(Y, € G) > Prob(Ys € G).

n—o0o

@ 2 = 3: This follows since K€ is open

©23=4 Let K=Aand G =A° Then 9A= K — G has
Prob(X-x € 0A) = 0, which implies
Prob(Xs € G) = Prob(Xs € K) = Prob(Xs € A). The claim now
follows from 2 and 3.

@ 4 = 1: For x such that Prob(X, = x) = 0, 4 implies
Prob(X, € (—o0, x]) = Prob(Xs € (—o0, x]).

O
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Helly's selection theorem

Theorem (Helly's selection theorem)

For every sequence F, of distribution functions, there is a subsequence
Fn(k) and a right continuous nondecreasing function F so that
limk—o0 Fak)(¥) = F(y) at all continuity points y of F.

This convergence is called vague.
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Helly's selection theorem

Proof.

o Let g1, o, ... be an enumeration of the rationals. By diagonalization
it's possible to choose a sequence Fj, such that F, (q) — G(q)
converges for each rational q.

e Define G at x, by G(x) =inf{G(q) : g € Q,q > x}. Evidently G is
right continuous.

@ The convergence at points of continuity of G follows from the
convergence at rational points.
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Tight sequences

Definition
A sequence of distribution functions {F,} is tight if, for all € > 0 there is

M, so that
limsupl — Fp(M,) + Fo(—M,) < e.

n—o0
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Tight sequences

Theorem

Let {F,} be a sequence of probability distribution functions. Every
subsequential limit of {F,} is the distribution function of a probability
measure if and only if {F,} is tight.

Thus the tightness condition rules out ‘escape of mass’. For a proof, see
Durrett, p. 104.
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Tight sequences

Theorem

If there is a ¢ > 0 so that ¢(x) — oo as |x| — oo and

C= SLrl,p/d)(x)an(x) < oo

then F, is tight.

Proof.
1= Fo(M) + Fa(=M) < S5 O
Math 639: Lecture 5
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Metrics on distributions

Definition
The Lévy Metric on two distribution functions is defined by

p(F,G) =inf{e: F(x —€) — e < G(x) < F(x + €) + € for all x}.

One has p(Fp, F) — 0 if and only if F, = F.
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Metrics on distributions

Definition
The Ky Fan Metric on two distribution functions is defined by

a(X,Y)=inf{e > 0:Prob(|X — Y| >¢€) <€}

Exercise

Check that the distribution functions F, G of random variables X, Y,
satisfy p(F, G) < a(X,Y).

Bob Hough Math 639: Lecture 5 February 7, 2017 28 / 57



Convergence in distribution

Theorem

If each subsequence of {X,} has a sub-subsequence which converges in
distribution, then {X,} converges in distribution.

Proof.
This follows on applying the Lévy metric. Ol
v
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Uniqueness of the characteristic function

Theorem (The inversion formula)

Let ¢(t) = [ e™u(dx) where i is a probability measure. If a < b, then

T e—ita _ e—ltb

Jim - s = (a0 + Su({a, b)),
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Uniqueness of the characteristic function

Proof.
o Let

T o TO
RO,T) = [ Mg o [ S"X g _os(Th).
-7 t 0 X

© As T — 00, S(T) — 5,50 R(0, T) — msgn6. Thus

2T a<x<b
R(x—a,T)—R(x—b,T) =< 7 x=a,b
0 otherwise
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Uniqueness of the characteristic function

Proof.
o Calculate
1 T e—ita o e—itb 1 T e—ita o e—itb /tx
o | e~ 2W/_T/I_t J(dx)dt
i :/ [/T sin(t(X = a)) ; sin(t(x = b))dt:| M(dX)
/(R — R(x — b, T))pu(dx).
@ The claim follows by bounded convergence, since
efrta e—itb _ fb ef’txdx
Ol
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Characteristic functions

Theorem
If [|¢(t)|dt < oo, then p has bounded continuous density

) = 5 [ € ole)ck
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Characteristic functions

Proof.
Check
1 1 00 e—ita o e—itb
b = b}) = — —¢(t)dt
(a6 + gulla.b) = 5= [ a0
b—a [*
< t)|dt.
LG
Hence i does not have atoms. Ol
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Characteristic functions

Proof.
Calculate
1 e—itx _ efit(XJrh)
uxxc ) = o [ S o
27 it
1 x+h "
= — —Yd t)dt
— < /X E y) (1)
x+h 1 ”
= S =y
/X (27r/e gzb(t)dt) dy.
Continuity of the integrand follows from dominated convergence. [

Bob Hough Math 639: Lecture 5 February 7, 2017 35/ 57



Method of characteristic functions

Theorem

Let up, 1 < n < oo be probability measures with characteristic functions
Pn-

Q If up = p then ¢n(t) — ¢(t) for all t.

@ If ¢n(t) converges pointwise to a limit ¢(t) that is continuous at 0,

then the associated sequence of measures is tight, and converges
weakly to the measure 11 with characteristic function ¢.
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Method of characteristic functions

Proof.

@ Item 1 is immediate.
o [Y 1—e™dt=2y— 20X

@ Hence

ux

> 2/|X| : <1 - ’u1X|> fen(dx)
2

o [ - ononde=2 [ (1- 222 e

@ Since ¢(0) =1 and ¢ is continuous at 0, the corresponding integral
against ¢ tends to 0 as u — 0.

Ol

v
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Method of characteristic functions

Proof.

@ Given € > 0, let u sufficiently small so that

1 u
/ (1—¢(t))dt <e.
u —u
By monotone convergence, the same bound, but replacing € with 2e,
holds for ¢, for all n sufficiently large. Hence {u,} is tight.

@ By tightness, any subsequence of {yu,} has a further subsequence
which is convergent in distribution. Hence this subsequence has
characteristic function converging to ¢, which is the characteristic
function of its limiting measure p.

@ The convergence in general now follows from the Lévy metric.
O
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Method of characteristic functions

Theorem

If [ |x]"u(dx) < oo, then the characteristic function ¢ has n continuous
derivatives, and

(1) = / ()" ().

Proof.
Exercise. [
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Method of characteristic functions

The following estimate is obtained from Taylor's theorem with remainder.

o |X|n+1 2|X|"
min { ———— .
- (n+1)!" n!

Lemma
~ (ix)"

m!
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Method of characteristic functions

Theorem
IFE [|X]?] < oo, then

o(t) =1+ it E[X] — %2 E [X?] + o(t?).

Proof.

The error term is < t2E [|t||X|® A 2|X|?]. This tends to 0 as t — 0 by
dominated convergence. O

v
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Method of characteristic functions

Theorem

If lim supy, o 2O=2QHPEN o0 then E [|X]?] < oo.
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Method of characteristic functions

Proof.

We have (e™ —2 4 e=*)/h2 = —2(1 — cos hx)/h* < 0 and
2(1 — cos hx)/h?® — x? as h — 0. By Fatou and Fubini,

/x dF (x) < 2I|m|nf/COSthF( )
ey 20 = 26(0) + 6(-h)

h—0 h?

< oQ.
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Polya's criteria

Theorem (Polya’s criteria)

Let ¢(t) be real non-negative and have ¢p(0) =1, ¢(t) = ¢(—t) and ¢ is
decreasing and convex on (0, c0) with

ltif(; o(t) =1, tI|Tr;10 o(t) =0.

Then there is a probability measure v on (0,0), so that

o) = [ (1= X)) w(ds).
0 s

This exhibits ¢ as the convex combination of characteristic functions of

probability measures, hence as the characteristic function of a probability
measure.
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Polya's criteria

Proof.

@ Since ¢ is convex, it's right derivative

1y g S8+ ) — 6(t)
cb(t)—l,gfg -

exists and is right continuous and increasing.

o Let u be the measure u(a, b] = ¢/(b) — ¢'(a) for all 0 < a < b < 0.
Define v by Z—Z(s) =s.

e ¢'(t) = 0as t— oo, so

~#9) = [

r

Ol

v
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Polya's criteria

Proof.

@ By Fubini's theorem

t)—/ / ”(dr)d _/ 1/ ds/(dr)
= / (1-1) o = /0 (1-5)" vt

@ The result follows on using ¢(—t) = ¢(t).
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The Moment problem

e Suppose [ xKdF,(x) has limit s for each k.

e This implies that {F,} is tight, and every subsequential limit has
moments iy

o If there is a unique distribution function F with moments py, then it
follows that F, = F.

@ The moment problem asks under which conditions the moments of a
measure are unique.
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The Moment problem

The lognormal density is

_ (log x)?
o e(mr)
=  *=2C

Definein —1 < a <1,

fa(x) = fo(x)[1 + asin(27 log x)].

Theorem
The densities f;, —1 < a < 1 have the same moments. J
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The Moment problem

Proof.
o It suffices to check

o0
/ x"fo(x) sin(27 log x)dx = 0
0

forr=20,1,2,....
@ Make the change of variables s = logx — r, ds = % to write the
integral as

\/2?/ exp(rs + r?) exp< (s—|—2r)2> sin(27(r + s))ds

222 1y (£) inanss =0

V2T —&o

Ol

V.
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Carleman’s condition

Theorem

3%
“22—;: = r < 0o, then there is at most one density function F
with ux = [ x*dF(x) for all positive integers k.

If lim supy_,

Carleman’s condition is only slightly weaker,

Z 1 =
2k
k=1 pi3)
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Carleman’s condition

Proof.

o Lety= [ |x|“dF(x). Then V2k+1 < pokHoki2, SO

@ By Taylor's theorem

(e

L
limsup -~ = r < .
k—o0 k
”i (i)™ \ | _ X",
— m! n!

Bob Hough
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Carleman’s condition

Proof.
@ The characteristic function satisfies

tnfl _ ’t|n
_ — () —  — (n-1) <
80+ 1) = 6(6) = t8/(6) .. — gy 6)| < v
o Since vy < (r 4 €)¥k* for all k sufficiently large, and ek > ’,‘(—T we
obtain
=t 1
$(0+1) = ¢ +mz_:1m,¢ ) lt<—

@ The uniqueness now follows from the fact that a distribution is
determined by its characteristic function.
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The central limit theorem

Theorem

Let X1, Xa, ... be i.i.d. E[X{] = p, Var(X;) = 02 € (0,00). If
S, =X1+---+ X, then

S,—n

NI

on
where 1) is the standard normal distribution.
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The central limit theorem

Proof.
@ By subtracting the mean, we can assume p = 0.
o We have
, 242
(t) = E [e'fxl} =1- 2 +o(t)
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The Lindeberg-Feller Theorem

Theorem (The Lindeberg-Feller Theorem)

For each n, let X, m, 1 < m < n, be independent random variables with
E[Xn,m] = 0. Suppose

(1 E[X,%’m] —02>0
Q@ Foralle >0, limpyoo Yom_q E [|Xn.m[?1(| Xn,m| > €)] = 0.
Then S, = Xp1+ -4+ Xop = on as n — oo.
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The Lindeberg-Feller Theorem

Proof.
o Let pmn(t) = E [eXnm], 02 =E[X2,].

@ We have, by Taylor expansion

t20,2,7m
dnm(t) - (1 - 2)

< E [[tXn,m[*L(| Xn,m]| < €)] + E [2[tXn,m[*1(| Xn,m]| > €)]

< E [|tXn,ml* A 2[tXn,m|?]

< et E [|Xnm|*1(| Xn,m| < €)] + 262 E [|Xom|*1(| Xnm| > €)] -

@ Using the second condition, we have

n
lim sup E
m=1

n—o00

2 2
1—to;

’m < t3 2'
> < €|t]Po

Gn,m(t) —

Ol

V.
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The Lindeberg-Feller Theorem

Proof.

@ Since € > 0 was arbitrary,

" (PR,
Howr (57

m=1

— 0

as n — o0.

@ Since sup,, a%ym — 0 as n — oo,

f[ 1—t20%’m — ex —ﬁ
2 P 2

m=1

as n — 00, 50 [[1_1 ¢nm(t) — exp <—$) as n — oo, which

proves the convergence.
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