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The binomial distribution

Let X1,X2, ... be i.i.d. random variables,

Prob(X1 = 1) =
1

2
, Prob(X1 = −1) =

1

2
.

The sum Sn = X1 + X2 + · · ·+ Xn is the nth step of simple random walk.
From the binomial theorem one obtains

Prob(S2n = 2k) =

(
2n

n + k

)
2−2n.
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The binomial distribution

As n→∞, the binomial distribution approximates the density of a normal
distribution pointwise in the following sense.

Theorem

If 2k√
2n
→ x as n→∞ then

Prob(S2n = 2k) ∼ e−
x2

2

√
πn
.

Bob Hough Math 639: Lecture 5 February 7, 2017 3 / 57



The binomial distribution

Proof.

Stirling’s formula gives the asymptotic

n! ∼ nne−n
√

2πn

as n→∞.

Hence as |n ± k | → ∞,(
2n

n + k

)
=

(2n)!

(n + k)!(n − k)!

∼ (2n)2n

(n − k)n−k(n + k)n+k

√
2n

2π(n + k)(n − k)
.
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The binomial distribution

Proof.

If k
n → 0 as n increases,(

2n

n + k

)
2−2n ∼ 1√

πn

(
1 +

k

n

)−n−k (
1− k

n

)−n+k

∼ 1√
πn

(
1− k2

n2

)−n (
1 +

k

n

)−k (
1− k

n

)k

.

If k = o(n
2
3 ) then this is ∼ e−

k2
n√
πn
, as wanted.
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The De Moivre-Laplace Theorem

Theorem (The De Moivre-Laplace Theorem)

If a < b then as m→∞,

Prob

(
a ≤ Sm√

m
≤ b

)
→ 1√

2π

∫ b

a
e−

x2

2 dx .
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The De Moivre-Laplace Theorem

Proof.

Assume m = 2n is even, as the odd case may be handled similarly.

Calculate

Prob

(
a ≤ Sm√

m
≤ b

)
=

∑
m∈[a

√
2n,b
√
2n]∩2Z

Prob(S2n = m).

Inserting the asymptotic evaluation, this is

∼
(

2

n

) 1
2 ∑
x∈[a,b]∩

√
2
n
Z

e−
x2

2

√
2π
∼
∫ b

a

e
−x2

2

√
2π

dx .

Bob Hough Math 639: Lecture 5 February 7, 2017 7 / 57



Convergence in distribution

Definition

A sequence of random variables Xn is said to converge in distribution to
X∞, written Xn ⇒ X∞, if for each interval (a, b] for which a and b are
points of continuity of the distribution function of X∞,

Prob(Xn ∈ (a, b])→ Prob(X∞ ∈ (a, b]).
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Geometric distribution

Example

Let Xp be the number of trials needed to get a success in a sequence of
independent trials of success probability p. This has a geometric
distribution, Prob(Xp ≥ n) = (1− p)n−1 for n = 1, 2, 3, .... As p ↓ 0,

Prob(pXp > x)→ e−x , x ≥ 0.
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Birthday problem

Example

Let X1,X2, ... be independent and uniformly distributed on {1, 2, ...,N},
and let TN = min{n : Xn = Xm, some m < n}. Hence

Prob(TN > n) =
n∏

m=2

(
1− m − 1

N

)
,

and, for x ≥ 0,

Prob

(
TN

N
1
2

> x

)
→ exp

(
−x2

2

)
.
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Convergence of maxima

Example

Let X1,X2, ... be independent with distribution F , and let
Mn = maxm≤n Xm. Mn has distribution function Prob(Mn ≤ x) = F (x)n.
In particular, if Xi has an exponential distribution, so that F (x) = 1− e−x ,
then

Prob(Mn − log n ≤ y)→ exp(−e−y ), n→∞.

This is the Gumbel distribution.
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Weak convergence

Theorem

If Fn ⇒ F∞ then there are random variables Yn, 1 ≤ n ≤ ∞ with
distribution Fn so that Yn → Y∞, a.s.
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Weak convergence

Proof.

We build the random variables on (0, 1) with Borel sets and Lebesgue
measure.

Define Yn(x) = sup{y : Fn(y) ≤ x}, and similarly Y∞.

Define ax = sup{y : F∞(y) < x}, bx = inf{y : F∞(y) > x}.
Let Ω0 = {x : ax = bx}. We have Ω \ Ω0 is countable, since (ax , bx)
contains a rational number. We check that Yn(x)→ Y∞(x) for
x ∈ Ω0.
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Weak convergence

Proof.

Recall that, for x ∈ Ω0, sup{y : F∞(y) < x} = inf{y : F∞(y) > x}.
Let y < F−1(x) be a point of continuity. Since x ∈ Ω0, F (y) < x ,
and so Fn(y) < x for all n sufficiently large. It follows that
F−1n (x) ≥ y and

lim inf
n→∞

F−1n (x) ≥ F−1∞ (x).

Arguing similarly, lim supn→∞ F−1n (x) ≤ F−1∞ (x).
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Weak convergence

Theorem

Xn ⇒ X∞ if and only if for every bounded continuous function g we have
E[g(Xn)] = E[g(X∞)].
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Weak convergence

Proof.

First suppose Xn ⇒ X∞. Choose Yn equal in distribution to Xn and
converging a.s.. Then bounded convergence gives

E[g(Xn)] = E[g(Yn)]→ E[g(Y∞)] = E[g(X∞)].

Now suppose E[g(Xn)]→ E[g(X∞)] for all bounded continuous g .
Let

gx ,ε(y) =


1 y ≤ x
0 y ≥ x + ε

linear x ≤ y ≤ x + ε
.
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Weak convergence

Proof.

Calculate

lim sup
n→∞

Prob(Xn ≤ x) ≤ lim sup
n→∞

E[gx ,ε(Xn)]

= E[gx ,ε(X∞)] ≤ Prob(X∞ ≤ x + ε).

Letting ε ↓ 0 gives lim supn→∞ Prob(Xn ≤ x) ≤ Prob(X∞ ≤ x).

To obtain the other direction use gx−ε,ε.
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Continuous mapping theorem

Theorem (Continuous mapping theorem)

Let g be a measurable function and Dg = {x : g discontinuous at x}. If
Xn ⇒ X∞ and Prob(X∞ ∈ Dg ) = 0 then g(Xn)⇒ g(X ). If, in addition, g
is bounded, then E[g(Xn)]→ E[g(X∞)].
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Continuous mapping theorem

Proof.

Let Yn equal to Xn in distribution, with Yn → Y∞ a.s.

If f is continuous, then Df ◦g ⊂ Dg so Prob(Y∞ ∈ Df ◦g ) = 0 and
f (g(Yn))→ f (g(Y∞)) a.s.

If f is bounded, then E[f (g(Yn))]→ E[f (g(Y∞))] so
g(Xn)⇒ g(X∞).

We have g(Yn)→ g(Y∞) a.s., so that for bounded g ,
E[g(Yn)]→ E[g(Y∞)].
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Convergence in distribution

Theorem

The following statements are equivalent:

1 Xn ⇒ X∞
2 For all open sets G, lim infn→∞ Prob(Xn ∈ G ) ≥ Prob(X∞ ∈ G ).

3 For all closed sets K , lim supn→∞ Prob(Xn ∈ K ) ≤ Prob(X∞ ∈ K ).

4 For all sets A with Prob(X∞ ∈ ∂A) = 0,
limn→∞ Prob(Xn ∈ A) = Prob(X∞ ∈ A).
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Convergence in distribution

Proof.

1⇒ 2: Let Yn have the same distribution as Xn and satisfy Yn → Y∞
a.s. Then lim inf 1G (Yn) ≥ 1G (Y∞), so Fatou implies

lim inf
n→∞

Prob(Yn ∈ G ) ≥ Prob(Y∞ ∈ G ).

2⇒ 3: This follows since K c is open

2, 3⇒ 4: Let K = A and G = Ao . Then ∂A = K − G has
Prob(X∞ ∈ ∂A) = 0, which implies
Prob(X∞ ∈ G ) = Prob(X∞ ∈ K ) = Prob(X∞ ∈ A). The claim now
follows from 2 and 3.

4⇒ 1: For x such that Prob(X∞ = x) = 0, 4 implies
Prob(Xn ∈ (−∞, x ])→ Prob(X∞ ∈ (−∞, x ]).
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Helly’s selection theorem

Theorem (Helly’s selection theorem)

For every sequence Fn of distribution functions, there is a subsequence
Fn(k) and a right continuous nondecreasing function F so that
limk→∞ Fn(k)(y) = F (y) at all continuity points y of F .

This convergence is called vague.
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Helly’s selection theorem

Proof.

Let q1, q2, ... be an enumeration of the rationals. By diagonalization
it’s possible to choose a sequence Fnk such that Fnk (q)→ G (q)
converges for each rational q.

Define G at x , by G (x) = inf{G (q) : q ∈ Q, q > x}. Evidently G is
right continuous.

The convergence at points of continuity of G follows from the
convergence at rational points.
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Tight sequences

Definition

A sequence of distribution functions {Fn} is tight if, for all ε > 0 there is
Mε so that

lim sup
n→∞

1− Fn(Mε) + Fn(−Mε) ≤ ε.

Bob Hough Math 639: Lecture 5 February 7, 2017 24 / 57



Tight sequences

Theorem

Let {Fn} be a sequence of probability distribution functions. Every
subsequential limit of {Fn} is the distribution function of a probability
measure if and only if {Fn} is tight.

Thus the tightness condition rules out ‘escape of mass’. For a proof, see
Durrett, p. 104.
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Tight sequences

Theorem

If there is a φ ≥ 0 so that φ(x)→∞ as |x | → ∞ and

C = sup
n

∫
φ(x)dFn(x) <∞

then Fn is tight.

Proof.

1− Fn(M) + Fn(−M) ≤ C
inf|x|≥M φ(x) .
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Metrics on distributions

Definition

The Lévy Metric on two distribution functions is defined by

ρ(F ,G ) = inf{ε : F (x − ε)− ε ≤ G (x) ≤ F (x + ε) + ε for all x}.

One has ρ(Fn,F )→ 0 if and only if Fn ⇒ F .
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Metrics on distributions

Definition

The Ky Fan Metric on two distribution functions is defined by

α(X ,Y ) = inf{ε ≥ 0 : Prob(|X − Y | > ε) ≤ ε}.

Exercise

Check that the distribution functions F ,G of random variables X ,Y ,
satisfy ρ(F ,G ) ≤ α(X ,Y ).
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Convergence in distribution

Theorem

If each subsequence of {Xn} has a sub-subsequence which converges in
distribution, then {Xn} converges in distribution.

Proof.

This follows on applying the Lévy metric.

Bob Hough Math 639: Lecture 5 February 7, 2017 29 / 57



Uniqueness of the characteristic function

Theorem (The inversion formula)

Let φ(t) =
∫

e itxµ(dx) where µ is a probability measure. If a < b, then

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt = µ((a, b)) +

1

2
µ({a, b}).
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Uniqueness of the characteristic function

Proof.

Let

R(θ,T ) =

∫ T

−T

sin θt

t
dt = 2

∫ Tθ

0

sin x

x
dx = 2S(Tθ).

As T →∞, S(T )→ π
2 , so R(θ,T )→ π sgn θ. Thus

R(x − a,T )− R(x − b,T )→


2π a < x < b
π x = a, b
0 otherwise

.
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Uniqueness of the characteristic function

Proof.

Calculate

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)dt =

1

2π

∫ T

−T

∫
e−ita − e−itb

it
e itxµ(dx)dt

1

2π
=

∫ [∫ T

−T

sin(t(x − a))− sin(t(x − b))

t
dt

]
µ(dx)

=
1

2π

∫
(R(x − a,T )− R(x − b,T ))µ(dx).

The claim follows by bounded convergence, since
e−ita−e−itb

it =
∫ b
a e−itxdx .

Bob Hough Math 639: Lecture 5 February 7, 2017 32 / 57



Characteristic functions

Theorem

If
∫
|φ(t)|dt <∞, then µ has bounded continuous density

f (y) =
1

2π

∫
e−ityφ(t)dt.
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Characteristic functions

Proof.

Check

µ((a, b)) +
1

2
µ({a, b}) =

1

2π

∫ ∞
−∞

e−ita − e−itb

it
φ(t)dt

≤ b − a

2π

∫ ∞
−∞
|φ(t)|dt.

Hence µ does not have atoms.
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Characteristic functions

Proof.

Calculate

µ(x , x + h) =
1

2π

∫
e−itx − e−it(x+h)

it
φ(t)dt

=
1

2π

∫ (∫ x+h

x
e−itydy

)
φ(t)dt

=

∫ x+h

x

(
1

2π

∫
e−ityφ(t)dt

)
dy .

Continuity of the integrand follows from dominated convergence.
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Method of characteristic functions

Theorem

Let µn, 1 ≤ n ≤ ∞ be probability measures with characteristic functions
φn.

1 If µn ⇒ µ then φn(t)→ φ(t) for all t.

2 If φn(t) converges pointwise to a limit φ(t) that is continuous at 0,
then the associated sequence of measures is tight, and converges
weakly to the measure µ with characteristic function φ.
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Method of characteristic functions

Proof.

Item 1 is immediate.∫ u
−u 1− e itxdt = 2u − 2 sin ux

x .

Hence

u−1
∫ u

−u
(1− φn(t))dt = 2

∫ (
1− sin ux

ux

)
µn(dx)

≥ 2

∫
|x |≥ 2

u

(
1− 1

|ux |

)
µn(dx)

≥ µn
({

x : |x | > 2

u

})
.

Since φ(0) = 1 and φ is continuous at 0, the corresponding integral
against φ tends to 0 as u → 0.
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Method of characteristic functions

Proof.

Given ε > 0, let u sufficiently small so that

1

u

∫ u

−u
(1− φ(t))dt < ε.

By monotone convergence, the same bound, but replacing ε with 2ε,
holds for φn for all n sufficiently large. Hence {µn} is tight.

By tightness, any subsequence of {µn} has a further subsequence
which is convergent in distribution. Hence this subsequence has
characteristic function converging to φ, which is the characteristic
function of its limiting measure µ.

The convergence in general now follows from the Lévy metric.

Bob Hough Math 639: Lecture 5 February 7, 2017 38 / 57



Method of characteristic functions

Theorem

If
∫
|x |nµ(dx) <∞, then the characteristic function φ has n continuous

derivatives, and

φ(n)(t) =

∫
(ix)ne itxµ(dx).

Proof.

Exercise.
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Method of characteristic functions

The following estimate is obtained from Taylor’s theorem with remainder.

Lemma ∣∣∣∣∣e ix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

(
|x |n+1

(n + 1)!
,

2|x |n

n!

)
.
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Method of characteristic functions

Theorem

If E
[
|X |2

]
<∞, then

φ(t) = 1 + it E[X ]− t2

2
E
[
X 2
]

+ o(t2).

Proof.

The error term is ≤ t2 E
[
|t||X |3 ∧ 2|X |2

]
. This tends to 0 as t → 0 by

dominated convergence.
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Method of characteristic functions

Theorem

If lim suph↓0
φ(h)−2φ(0)+φ(−h)

h2
> −∞, then E

[
|X |2

]
<∞.
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Method of characteristic functions

Proof.

We have (e ihx − 2 + e−ihx)/h2 = −2(1− cos hx)/h2 ≤ 0 and
2(1− cos hx)/h2 → x2 as h→ 0. By Fatou and Fubini,∫

x2dF (x) ≤ 2 lim inf
h→0

∫
1− cos hx

h2
dF (x)

= − lim sup
h→0

φ(h)− 2φ(0) + φ(−h)

h2
<∞.
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Polya’s criteria

Theorem (Polya’s criteria)

Let φ(t) be real non-negative and have φ(0) = 1, φ(t) = φ(−t) and φ is
decreasing and convex on (0,∞) with

lim
t↓0

φ(t) = 1, lim
t↑∞

φ(t) = 0.

Then there is a probability measure ν on (0,∞), so that

φ(t) =

∫ ∞
0

(
1−

∣∣∣ t
s

∣∣∣)+ ν(ds).

This exhibits φ as the convex combination of characteristic functions of
probability measures, hence as the characteristic function of a probability
measure.
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Polya’s criteria

Proof.

Since φ is convex, it’s right derivative

φ′(t) = lim
h↓0

φ(t + h)− φ(t)

h

exists and is right continuous and increasing.

Let µ be the measure µ(a, b] = φ′(b)− φ′(a) for all 0 ≤ a < b <∞.
Define ν by dν

dµ(s) = s.

φ′(t)→ 0 as t →∞, so

−φ′(s) =

∫ ∞
s

ν(dr)

r
.
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Polya’s criteria

Proof.

By Fubini’s theorem

φ(t) =

∫ ∞
t

∫ ∞
s

ν(dr)

r
ds =

∫ ∞
t

r−1
∫ r

t
dsν(dr)

=

∫ ∞
t

(
1− t

r

)
ν(dr) =

∫ ∞
0

(
1− t

r

)+
ν(dr).

The result follows on using φ(−t) = φ(t).
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The Moment problem

Suppose
∫

xkdFn(x) has limit µk for each k .

This implies that {Fn} is tight, and every subsequential limit has
moments µk

If there is a unique distribution function F with moments µk , then it
follows that Fn ⇒ F .

The moment problem asks under which conditions the moments of a
measure are unique.
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The Moment problem

The lognormal density is

f0(x) =
exp

(
− (log x)2

2

)
x
√

2π
, x ≥ 0.

Define in −1 ≤ a ≤ 1,

fa(x) = f0(x)[1 + a sin(2π log x)].

Theorem

The densities fa, −1 ≤ a ≤ 1 have the same moments.
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The Moment problem

Proof.

It suffices to check ∫ ∞
0

x r f0(x) sin(2π log x)dx = 0

for r = 0, 1, 2, ....

Make the change of variables s = log x − r , ds = dx
x to write the

integral as

1√
2π

∫ ∞
−∞

exp(rs + r2) exp

(
−(s + r)2

2

)
sin(2π(r + s))ds

=
exp

(
r2

2

)
√

2π

∫ ∞
−∞

exp

(
−s2

2

)
sin(2πs)ds = 0.
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Carleman’s condition

Theorem

If lim supk→∞
µ

1
2k
2k
2k = r <∞, then there is at most one density function F

with µk =
∫

xkdF (x) for all positive integers k.

Carleman’s condition is only slightly weaker,

∞∑
k=1

1

µ
1
2k
2k

=∞.
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Carleman’s condition

Proof.

Let νk =
∫
|x |kdF (x). Then ν22k+1 ≤ µ2kµ2k+2, so

lim sup
k→∞

ν
1
k
k

k
= r <∞.

By Taylor’s theorem∣∣∣∣∣e iθX
(

e itX −
n−1∑
m=0

(itX )m

m!

)∣∣∣∣∣ ≤ |tX |n

n!
.
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Carleman’s condition

Proof.

The characteristic function satisfies∣∣∣∣φ(θ + t)− φ(θ)− tφ′(θ)− ...− tn−1

(n − 1)!
φ(n−1)(θ)

∣∣∣∣ ≤ |t|nn!
νn.

Since νk ≤ (r + ε)kkk for all k sufficiently large, and ek ≥ kk

k! , we
obtain

φ(θ + t) = φ(θ) +
∞∑

m=1

tm

m!
φ(m)(θ), |t| < 1

er
.

The uniqueness now follows from the fact that a distribution is
determined by its characteristic function.
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The central limit theorem

Theorem

Let X1,X2, ... be i.i.d. E[Xi ] = µ, Var(Xi ) = σ2 ∈ (0,∞). If
Sn = X1 + · · ·+ Xn then

Sn − nµ

σn
1
2

⇒ η

where η is the standard normal distribution.
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The central limit theorem

Proof.

By subtracting the mean, we can assume µ = 0.

We have

φ(t) = E
[
e itX1

]
= 1− σ2t2

2
+ o(t2).

For each t,

E

[
exp

(
itSn

σn
1
2

)]
=

(
1− t2

2n
+ o(n−1)

)n

→ e−
t2

2 .
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The Lindeberg-Feller Theorem

Theorem (The Lindeberg-Feller Theorem)

For each n, let Xn,m, 1 ≤ m ≤ n, be independent random variables with
E[Xn,m] = 0. Suppose

1
∑n

m=1 E[X 2
n,m]→ σ2 > 0

2 For all ε > 0, limn→∞
∑n

m=1 E
[
|Xn,m|21(|Xn,m| > ε)

]
= 0.

Then Sn = Xn,1 + · · ·+ Xn,n ⇒ ση as n→∞.
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The Lindeberg-Feller Theorem

Proof.

Let φm,n(t) = E
[
e itXn,m

]
, σ2n,m = E

[
X 2
n,m

]
.

We have, by Taylor expansion∣∣∣∣∣φn,m(t)−

(
1−

t2σ2n,m
2

)∣∣∣∣∣ ≤ E
[
|tXn,m|3 ∧ 2|tXn,m|2

]
≤ E

[
|tXn,m|31(|Xn,m| ≤ ε)

]
+ E

[
2|tXn,m|21(|Xn,m| > ε)

]
≤ εt3 E

[
|Xn,m|21(|Xn,m| ≤ ε)

]
+ 2t2 E

[
|Xn,m|21(|Xn,m| > ε)

]
.

Using the second condition, we have

lim sup
n→∞

n∑
m=1

∣∣∣∣∣φn,m(t)−
1− t2σ2n,m

2

∣∣∣∣∣ ≤ ε|t|3σ2.
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The Lindeberg-Feller Theorem

Proof.

Since ε > 0 was arbitrary,∣∣∣∣∣
n∏

m=1

φn,m(t)−
n∏

m=1

(
1−

t2σ2n,m
2

)∣∣∣∣∣→ 0

as n→∞.

Since supm σ
2
n,m → 0 as n→∞,

n∏
m=1

(
1−

t2σ2n,m
2

)
→ exp

(
−σ

2t2

2

)

as n→∞, so
∏n

m=1 φn,m(t)→ exp
(
−σ2t2

2

)
as n→∞, which

proves the convergence.

Bob Hough Math 639: Lecture 5 February 7, 2017 57 / 57


