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Renewal theory

Let X1,X2, ... be i.i.d. with 0 < Xi <∞. Let Tn = X1 + · · ·+ Xn and

Nt = sup{n : Tn ≤ t}.

Given a sequence of events which happen in succession with waiting time
Xn on the nth event, we think of Nt as the number of events which have
happened up to time t.

Theorem

If E[X1] = µ ≤ ∞, then as t →∞,

Nt

t
→ 1

µ
a.s..
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Renewal theory

Proof.

Since T (Nt) ≤ t < T (Nt + 1), dividing through by Nt gives

T (Nt)

Nt
≤ t

Nt
≤ T (Nt + 1)

Nt + 1

Nt + 1

Nt
.

We have Nt →∞ a.s.. Hence, by the strong law,

TNt

Nt
→ µ,

Nt + 1

Nt
→ 1.
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Empirical distribution functions

Let X1,X2, ... be i.i.d. with distribution F and let

Fn(x) =
1

n

n∑
m=1

1(Xm≤x).

Theorem (Glivenko-Cantelli Theorem)

As n→∞,
sup
x
|Fn(x)− F (x)| → 0 a.s..

Bob Hough Math 639: Lecture 4 February 2, 2017 4 / 56



Empirical distribution functions

Proof.

Note that F is increasing, but can have jumps.

For k = 1, 2, ..., and 1 ≤ j ≤ k − 1, define xj ,k = inf{x : F (x) ≥ j
k }.

Set x0,k = −∞, xk,k =∞.

Write F (x−) = limy↑x F (y).

Since each of Fn(xj ,k−) and Fn(xj ,k) converges by the strong law, and
Fn(xj ,k−)− Fn(xj−1,k) ≤ 1

k , the uniform convergence follows.
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Entropy

Let X1,X2, ... be i.i.d., taking values in {1, 2, ..., r} with all
possibilities of positive probability. Set Prob(Xi = k) = p(k) > 0.

Let πn(ω) = p(X1(ω))p(X2(ω))...p(Xn(ω)). By the strong law, a.s.

−1

n
log πn → H ≡ −

r∑
k=1

p(k) log p(k).

The constant H is called the entropy.
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The tail σ-algebra

Definition

Let X1,X2, ... be a sequence of random variables. Their tail σ-algebra is

T =
∞⋂
n=1

σ (Xn,Xn+1, ...) .
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The tail σ-algebra

Example

If {Bn} is a sequence from the Borel σ-algebra B, then
{Xn ∈ Bn i .o.} ∈ T .

Let Sn = X1 + X2 + · · ·+ Xn. We have
I {limn→∞ Sn exists} ∈ T ,
I {lim supn→∞ Sn > 0} 6∈ T
I {lim supn→∞

Sn

cn
> x} ∈ T if cn →∞.

Bob Hough Math 639: Lecture 4 February 2, 2017 8 / 56



Kolmogorov’s 0-1 law

Theorem

If X1,X2, ... are independent and A ∈ T then Prob(A) = 0 or
Prob(A) = 1.
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Kolmogorov’s 0-1 law

Proof.

We show that A is independent of itself, so that
Prob(A) = Prob(A ∩ A) = Prob(A)2.

Observe that for each k , σ(X1, ...,Xk) and σ(Xk+1,Xk+2, ...) are
independent. This follows, since σ(Xk+1,Xk+2, ...) is generated by
σ(Xk+1, ...,Xk+m) for m = 1, 2, 3, ..., whose union forms a π-system.

Since T ⊂ σ(Xk+1,Xk+1, ....), T is independent of σ(X1,X2, ...,Xk)
for each k , and hence of σ(X1,X2, ...).
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Kolmogorov’s 0-1 law

Example

If A1,A2, ... are independent then

Prob(An i.o.) is 0 or 1

Prob(limn→∞ Sn exists) is 0 or 1.
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Kolmogorov’s maximal inequality

Theorem (Kolmogorov’s maximal inequality)

Suppose X1, ...,Xn are independent with E[Xi ] = 0 and Var(Xi ) <∞. If
Sk = X1 + · · ·+ Xk , then

Prob

(
max
1≤k≤n

|Sk | ≥ x

)
≤ x−2 Var(Sn).
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Kolmogorov’s maximal inequality

Proof.

Let Ak = {|Sk | ≥ x} \
⋃k−1

j=1 {|Sj | ≥ x} be those trials for which the
sum first exceeds x at step k .

We have

E
[
S2
n

]
≥

n∑
k=1

∫
Ak

S2
ndP =

n∑
k=1

∫
Ak

(Sk + (Sn − Sk))2dP

≥
n∑

k=1

∫
Ak

S2
kdP +

n∑
k=1

∫
2Sk1Ak

(Sn − Sk)dP.

Since Sk1Ak
∈ σ(X1, ...,Xk), it is independent of Sn − Sk , so that the

second sum above is 0. Since |Sk | ≥ x on Ak , it follows that
E
[
S2
n

]
≥ x2 Prob (max1≤k≤n |Sk | ≥ x) .
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Convergence of series

Theorem

Let X1,X2, ... be independent, have E[Xi ] = 0 and

∞∑
n=1

Var(Xn) <∞.

With probability 1,
∑∞

n=1 Xn converges.
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Convergence of series

Proof.

Let SN =
∑N

n=1 Xn.

By Kolmogorov’s maximal theorem,

Prob

(
max

M≤m≤N
|Sm − SN | > ε

)
≤ ε−2

N∑
n=M+1

Var(Xn),

so

Prob

(
sup
m≥M

|Sm − SM | > ε

)
≤ ε−2

∞∑
n=M+1

Var(Xn).
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Convergence of series

Proof.

Let wM = supm,n≥M |Sm − Sn|. We have

Prob (wM > 2ε) ≤ Prob

(
sup
m≥M

|Sm − SM | > ε

)
→ 0

as M →∞, so wM ↓ 0 a.s..

Hence
∑

Xn is a.s. Cauchy, hence convergent.
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Convergence of series

Example

Let X1,X2, ... be i.i.d., taking values ±1 with probability 1
2 . The series

∞∑
n=1

Xn

nσ

converges a.s. if σ > 1
2 and diverges a.s. if σ ≤ 1

2 .
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Kolmogorov’s three-series theorem

Theorem

Let X1,X2, ... be independent. Let A > 0 and let Yi = Xi1(|Xi |≤A). In
order that

∑∞
n=1 Xn converge a.s. it is necessary and sufficient that

1
∑∞

n=1 Prob(|Xn| > A) <∞
2
∑∞

n=1 E[Yn] converges

3
∑∞

n=1 Var(Yn) <∞.
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Kolmogorov’s three-series theorem

Proof.

We postpone the proof of necessity.

To prove that the condition is sufficient, note that item 1 implies that
Xn 6= Yn finitely often with probability 1.

The a.s. convergence of
∑

n Yn is now guaranteed by the previous
theorem.
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Kronecker’s lemma

Theorem

If an ≥ 0 is an increasing sequence, an ↑ ∞ and
∑∞

n=1
xn
an

converges then

1

an

n∑
m=1

xm → 0.
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Kronecker’s lemma

Proof.

Let a0 = b0 = 0 and bm =
∑m

k=1
xk
ak

. By summation by parts,

1

an

n∑
m=1

xm =
1

an

{
n∑

m=1

am(bm − bm−1)

}

= bn −
n∑

m=1

(am − am−1)

an
bm−1.

Since bn tends to a limit, and an ↑ ∞,

lim
n→∞

bn −
n∑

m=1

(am − am−1)

an
bm−1 = 0.
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Rates of convergence

The following is a cheap version of the law of the iterated logarithm.

Theorem

Let X1,X2, ... be i.i.d. random variables satisfying E[Xi ] = 0 and
E[X 2

i ] = σ2 <∞. Let Sn = X1 + · · ·+ Xn. Then for ε > 0

Sn

n
1
2 (log n)

1
2
+ε
→ 0 a.s..
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Rates of convergence

Proof.

Let an = n
1
2 (log n)

1
2
+ε for n ≥ 2 and a1 = 1. Then

∞∑
n=1

Var

(
Xn

an

)
= σ2

(
1 +

∞∑
n=2

1

n(log n)1+2ε

)
<∞,

so
∑∞

n=1
Xn
an

converges a.s.. The claim now follows from Kronecker’s
lemma.
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Random Dirichlet series

Example

Form a ‘random multiplicative function’ by setting X (1) = 1,
choosing X (p), p prime to be i.i.d. ±1 with equal probability, and
declaring for all m, n, X (mn) = X (m)X (n).

For <(s) > 1, the Dirichlet series

L(s,X ) =
∞∑
n=1

X (n)

ns
=
∏
p

(
1− X (p)

ps

)−1
converges absolutely and has an absolutely convergent Euler product.

With probability 1, log L(s,X ) has a holomorphic continuation to
<(s) > 1

2 , so L(s,X ) 6= 0 there.
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Random Dirichlet series

Example

To check the last statement, write

log L(s,X ) =
∑
p

X (p)

ps
+ absolutely convergent in <(s) >

1

2
.

∑
p

X (p)

ps
=

∫ ∞
0

1

x s
d

∑
p≤x

X (p)


= s

∫ ∞
0

∑
p≤x X (p)

x s+1
dx .

With probability 1, for any ε > 0 the numerator is Oε(X
1
2
+ε), so that the

integral converges absolutely in <(s) > 1
2 , giving the holomorphic

extension.
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Rates of convergence

Theorem (Marcinkiewicz, Zygmund)

Let X1,X2, ... be i.i.d. with E[X1] = 0 and E[|X1|p] <∞ where 1 < p < 2.
If Sn = X1 + · · ·+ Xn then Sn

n
1
p
→ 0 a.s.
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Rates of convergence

Proof.

Let Yk = Xk1(
|Xk |≤k

1
p

) and Tn = Y1 + · · ·+ Yn.

We have

∞∑
k=1

Prob(Yk 6= Xk) =
∞∑
k=1

Prob (|Xk |p > k) ≤ E [|Xk |p] <∞.

Thus Prob(Yk 6= Xk i.o.) = 0 by Borel-Cantelli.
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Rates of convergence

Proof.

Calculate

∞∑
m=1

Var

(
Ym

m
1
p

)
≤
∞∑

m=1

E

[
Y 2
m

m
2
p

]

≤
∞∑

m=1

∫ m
1
p

0

2y

m
2
p

Prob (|X1| > y) dy

=

∫ ∞
0

∑
m>yp

2y

m
2
p

Prob(|X1| > y)dy

�
∫ ∞
0

yp−1 Prob(|X1| > y)dy = E[|X1|p] <∞.
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Rates of convergence

Proof.

Applying the theorem on convergence of series and Kronecker’s
lemma,

n−
1
p

n∑
k=1

(Ym − E[Ym])→ 0, a.s.

It remains to verify that n−
1
p
∑n

m=1 E[Ym]→ 0. To check this, write

E[Ym] = −E
[
X1 · 1

(
|X1| > m

1
p

)]
, so |E [Ym]| is bounded by

E
[
|X1| · 1

(
|X1| > m

1
p

)]
≤ m−1+

1
p E
[
|X1|p · 1

(
|X1| > m

1
p

)]
.

Since
∑

m≤n m
−1+ 1

p � n
1
p and the expectation tends to 0 as

m→∞, the claim follows.
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Infinite mean

Theorem

Let X1,X2, ... be i.i.d. with E[|X1|] =∞ and let Sn = X1 + · · ·+ Xn. Let
an be a sequence of positive numbers with an

n increasing. Then

lim supn→∞
|Sn|
an

= 0 or ∞ according as
∑

n Prob(|X1| ≥ an) <∞ or =∞.
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Infinite mean

Proof.

First suppose
∑

n Prob(|X1| ≥ an) =∞.

Since an
n is increasing

∞∑
n=1

Prob(|X1| ≥ kan) ≥
∞∑
n=1

Prob(|X1| ≥ akn)

≥ 1

k

∞∑
m=k

Prob(|X1| ≥ am) =∞.

In particular, lim supn→∞
|Xn|
an

=∞ with probability 1 by
Borel-Cantelli.

Since max(|Sn−1|, |Sn|) ≥ |Xn|
2 , the claim follows.
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Infinite mean

Proof.

Now suppose
∑

n Prob(|X1| ≥ an) <∞.

Define Yn = Xn1(|Xn| < an). Since Xn 6= Yn finitely often a.s., the

proof consists in checking that
∑

Var
(
Yn
an

)
<∞ and

1
an

∑n
m=1 E[Ym]→ 0.

Calculate

∞∑
n=1

Var

(
Yn

an

)
≤
∞∑
n=1

E[Y 2
n ]

a2n

=
∞∑

m=1

∫
[am−1,am)

y2dF (y)
∞∑

n=m

a−2n .
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Infinite mean

Proof.

Now suppose
∑

n Prob(|X1| ≥ an) <∞.

Since an ≥ nam
m ,

∑∞
n=m a−2n ≤ m2

a2m

∑∞
n=m n−2 � m

a2m
.

Thus

∞∑
m=1

Var

(
Yn

an

)
�

∞∑
m=1

mProb(am−1 ≤ |Xi | < am)

=
∞∑

m=1

Prob(|X1| > am−1) <∞.
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Infinite mean

Proof.

To prove the mean condition, first, since E[|Xi |] =∞ and∑∞
n=1 Prob(|Xi | > an) <∞, we have an

n ↑ ∞.

Bound∣∣∣∣∣ 1

an

n∑
m=1

E[Ym]

∣∣∣∣∣ ≤ 1

an

n∑
m=1

E [|Xm| · 1(|Xm| < am)]

≤ naN
an

+
n

an
E [|X1| · 1 (aN ≤ |X1| ≤ an)] .

If N grows sufficiently slowly, the first term tends to 0.
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Infinite mean

Proof.

Bound n
an

E [|X1| · 1 (aN ≤ |X1| ≤ an)] by

n∑
m=N+1

m

am
E [|X1| · 1(am−1 ≤ |X1| < am)]

≤
∞∑

m=N+1

mProb(am−1 ≤ |X1| < am).

Since

∞∑
m=1

mProb(am−1 ≤ |X1| < am) =
∞∑
n=1

Prob(|X1| ≥ an−1) <∞,

the latter tends to 0 as N →∞.
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Large deviations

Let X1,X2, ... be i.i.d., E[X1] = µ, |µ| <∞. We are interested in the tail
probability

Prob(Sn > na)

for a > µ. Define πn = Prob(Sn > na) and γn = log πn.

Lemma

For m, n ≥ 1,
πm+n ≥ πmπn.

Proof.

This follows from the independence, since

πm+n ≥ Prob (Sm ≥ ma, Sn+m − Sm ≥ na) = πmπn.
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Large deviations

Lemma

Let an be a sequence satisfying am+n ≥ am + an. Then

lim
n→∞

an
n
→ sup

n

an
n
.

Proof.

Since lim sup an
n ≤ sup an

n it suffices to check lim inf an
n ≥

an
n .

Given n > m, write n = km + `, 0 ≤ ` < m. We have

an
n
≥
(

km

km + `

)
am
m

+
a`
n
.

Letting n→∞ proves the claim.
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Large deviations

Define γ(a) = limn→∞
1
n log Prob (Sn ≥ na) . This exists by the previous

lemma. Furthermore,

Prob(Sn ≥ na) ≤ enγ(a).
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Moment generating function

Definition

The moment generating function for a random variable X is
φ(θ) = E[eθX ].
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Moment generating function

We assume that φ(θ) <∞ for some θ > 0. By Markov’s inequality,

eθna Prob(Sn ≥ na) ≤ E[exp(θSn)] = φ(θ)n,

Prob(Sn ≥ na) ≤ exp (−n(θa− log φ(θ))) .

Let θ+ = sup{θ : φ(θ) <∞}.

Lemma

log φ(θ) is continuous at 0, differentiable on (0, θ+) and satisfies

limθ↓0
φ′(θ)
φ(θ) = E[X ].
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Moment generating function

Proof.

Each of the statements follows by dominated convergence.

For instance, to prove the continuity at 0, for 0 < θ < θ0 < θ+ use
eθx ≤ 1 + eθ0x to take the limit as θ ↓ 0.

We proved in Lecture 2 that it’s possible to differentiate under the
expectation, from which the remaining two claims follow.
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Weighted distribution

To prove the lower bound, consider the distribution function

Fλ(x) =
1

φ(λ)

∫ x

−∞
eλydF (y).

Note that this distribution has mean

1

φ(λ)

∫ ∞
−∞

yeλydF (y) =
φ′(λ)

φ(λ)
.

Lemma

We have dF n

dF n
λ

= e−λxφ(λ)n.
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Weighted distribution

Proof.

We check this by induction. For n = 1 the claim holds by definition. Write

F n(z) = F n−1 ∗ F (z) =

∫ ∞
−∞

dF n−1(x)

∫ z−x

−∞
dF (y)

= φ(λ)n
∫ ∞
−∞

dF n−1
λ (x)

∫ ∞
−∞

1(x+y≤z)e
−λ(x+y)dFλ(y)

= φ(λ)n E
(
1(Sλ

n−1+Xλ)≤ze
−λ(Sλ

n−1+Xλ
n )
)

= φ(λ)n
∫ z

−∞
e−λudF n

λ (u).
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Tail probability

Suppose that the distribution of X is not a point mass at µ. It follows

that φ′(θ)
φ(θ) is strictly increasing by convexity. If a > µ then there is at most

one solution to the ‘saddle point’ equation

a =
φ′(θa)

φ(θa)
.

Theorem

Suppose there is θa ∈ (0, θ+) such that a = φ′(θa)
φ(θa)

. Then, as n→∞,

1

n
log Prob(Sn ≥ na)→ −aθa + log φ(θa).
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Tail probability

Proof.

The upper bound in the limit follows from taking θ = θa in the inequality

Prob(Sn ≥ na) ≤ exp(−n(aθ − log φ(θ))).
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Tail probability

Proof.

To prove the lower bound, use the weighted distribution Fλ,

Prob(Sn ≥ na) ≥
∫ nb

na
e−λxφ(λ)ndF n

λ (x)

≥ φ(λ)ne−λnb(F n
λ (nb)− F n

λ (na)).

Choose λ such that a < φ′(λ)
φ(λ) < b.

By the weak law of large numbers, F n
λ (nb)− F n

λ (na)→ 1 as n→∞.
Letting b ↓ a proves the claim.
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Examples

Example (Normal distribution)

The standard normal distribution has exponential generating function

φ(θ) =
1√
2π

∫ ∞
−∞

eθx exp

(
−x2

2

)
dx

=
e

θ2

2

√
2π

∫ ∞
−∞

e−
(x−θ)2

2 dx = e
θ2

2 .

Hence θa = a and γa = −aθa + log φ(θa) = −a2

2 .
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Examples

Example (Exponential distribution)

The exponential distribution with parameter 1 has exponential generating
function

φ(θ) =

∫ ∞
0

eθxe−xdx =
1

1− θ
, θ < 1.

Hence φ′

φ (θ) = 1
1−θ , so θa = 1− 1

a and

γ(a) = −aθa − log(1− θa) = −a + 1 + log a.
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Characteristic functions

Definition

The characteristic function of random variable X is

φ(t) = E
[
e itX

]
.

For real valued random variables, the characteristic function exists for all
real t, which gives the characteristic function an advantage over the
moment generating function.
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Characteristic functions

Note the following easy properties of characteristic functions.

Theorem

The characteristic function φ(t) of X satisfies

φ(0) = 1.

φ(−t) = φ(t).

|φ(t)| ≤ 1, with equality if and only if t = 0 or supp(X ) ⊂ 2π
t Z + c.

|φ(t + h)− φ(t)| ≤ E[|e ihX − 1|].
E
[
e it(aX+b)

]
= e itbφ(at).
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Characteristic functions

Proof.

The first two items are immediate.

For the third, if t 6= 0 and supp(X ) ∈ 2π
t Z + c then e itX = e itc a.s.

Going in the reverse direction, suppose t 6= 0 and φ(t) = e iθ. Then
X̃ = X − θ

t has φ̃(t) = 1, from which it follows that X̃ ∈ 2π
t Z a.s.

|φ(t + h)− φ(t)| = |E[e i(t+h)X − e itX ]|
≤ E[|e i(t+h)X − e itX |] = E[|e ihX − 1|]

E[e it(aX+b)] = e itb E[e itaX ] = e itbφ(at).
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Characteristic functions

Theorem

If X1 and X2 are independent and have characteristic functions φ1 and φ2,
then X1 + X2 has characteristic function φ1(t)φ2(t).

Proof.

We have

E
[
e it(X1+X2)

]
= E

[
e itX1e itX2

]
= E

[
e itX1

]
E
[
e itX2

]
.
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Characteristic functions

Example (Classical characteristic functions)

(Coin flips) If Prob(X = 1) = Prob(X = −1) = 1
2 , then

E[e itX ] =
e it + e−it

2
= cos t.

(Poisson distribution) If Prob(X = k) = e−λ λ
k

k! for k = 0, 1, 2, ...,
then

E
[
e itX

]
=
∞∑
k=0

e−λ
λke itk

k!
= exp

(
λ(e it − 1)

)
.
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Characteristic functions

Example (Classical characteristic functions)

(Normal distribution) The standard normal with density e−
x2

2√
2π

has

φ(t) = e−
t2

2 . To check this,

φ(t) =
1√
2π

∫ ∞
−∞

e−
x2

2
+itxdx

= e−
t2

2
1√
2π

∫ ∞
−∞

e−
(x−it)2

2 dx .

The last integral may be treated as a complex contour to complete
the evaluation.
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Characteristic functions

Example (Classical characteristic functions)

(Uniform distribution on (a, b)) The density 1
b−a on (a, b) has

φ(t) = e itb−e ita
it(b−a) .

(Triangular distribution, or Féjer kernel) The density 1− |x | on
(−1, 1) has characteristic function

φ(t) =

(
2 sin t

2

t

)2

.

To check this, note that the density is the sum of two independent
variables which are uniform on

(
−1

2 ,
1
2

)
.
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Characteristic functions

Example (Classical characteristic functions)

(Exponential distribution) The density e−x on (0,∞) has

φ(t) =

∫ ∞
0

e itx−xdx =
1

1− it
.

(Bilateral exponential) The density 1
2e
−|x | on R has φ(t) = 1

1+t2
.

(Cauchy distribution) The density 1
π(1+x2)

has φ(t) = exp(−|t|).

This follows from the previous calculation and the fact that the
Fourier transform is an involution L2 → L2.
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