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Renewal theory

Let X1, Xo,... beiid. with 0 < X; <oo. Let T, =Xy + -+ X, and
Ny =sup{n: T, < t}.

Given a sequence of events which happen in succession with waiting time
X, on the nth event, we think of N; as the number of events which have
happened up to time t.

Theorem
If E[X1] = p < o0, then as t — oo,

N; 1
— — — a.s..
t
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Renewal theory

Proof.
Since T(N;) <t < T(N;+ 1), dividing through by N; gives

L<T(Nt+1)Nt+1
N Ne = Ny+1 Ny

We have N; — oo a.s.. Hence, by the strong law,

M_) N +1

1.
N, P N,
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Empirical distribution functions

Let X3, Xo, ... be i.i.d. with distribution F and let
1 n

Fn(X) = ; 2:11(Xm<x)'
m=

Theorem (Glivenko-Cantelli Theorem)

As n — oo,
sup |Fn(x) — F(x)| — 0 a.s..
X
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Empirical distribution functions

Proof.
Note that F is increasing, but can have jumps.
o For k=1,2,...,and 1 < j < k — 1, define x; x = inf{x : F(x) > £}.
Set xp .k = —00, Xk k = 00.
o Write F(x—) = limy 4, F(y).
@ Since each of F,(xjx—) and Fs(x;j«) converges by the strong law, and
Fa(xjk—) — Fa(Xi—1,k) < %, the uniform convergence follows.

O

v
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Entropy

e Let Xi, Xy, ... be i.i.d., taking values in {1,2, ..., r} with all
possibilities of positive probability. Set Prob(X; = k) = p(k) > 0.
o Let mh(w) = p(X1(w))p(Xa(w))...p(Xn(w)). By the strong law, a.s.
Dogmy  H= Z )lo
n g Tn p(k gp

The constant H is called the entropy.
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The tail o-algebra

Definition
Let X1, Xo, ... be a sequence of random variables. Their tail o-algebra is

o0

T =) o (Xn, Xnt1,--.).-

n=1
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The tail o-algebra

Example

o If {B,} is a sequence from the Borel o-algebra A, then
{Xn€Byio}eT.
@ LetS,=X1+Xo+ -+ X,. We have
{limp— 00 Sy exists} € T,
{limsup,_,. S, >0} & 7
{limsup,,_, o ‘z—: >x} e T if ¢, = 0.

Bob Hough Math 639: Lecture 4 February 2, 2017 8 /56



Kolmogorov's 0-1 law

Theorem

If X1, Xa, ... are independent and A € .7 then Prob(A) =0 or
Prob(A) = 1.
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Kolmogorov's 0-1 law

Proof.
We show that A is independent of itself, so that
Prob(A) = Prob(A N A) = Prob(A)>2.
@ Observe that for each k, o(Xi,..., Xk) and o(Xk41, Xk42,...) are
independent. This follows, since o(Xki1, Xki2,...) is generated by
0(Xk41y s Xktm) for m=1,2,3, ..., whose union forms a m-system.

e Since I C o(Xks1, Xk+1,--.-), 7 is independent of o(Xy, Xa, ..., Xk)
for each k, and hence of o(X1, Xz, ...).

Ol

v
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Kolmogorov's 0-1 law

Example
If A1, A, ... are independent then
@ Prob(A, i.0.)is0or 1

@ Prob(lim,_oc Sy exists) is 0 or 1.
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Kolmogorov's maximal inequality

Theorem (Kolmogorov's maximal inequality)

Suppose Xi, ..., X, are independent with E[X;] = 0 and Var(X;) < co. If
Sk=X1+ -+ Xk, then

Prob ( max |Sk| > x) < x72Var(S,).
1<k<n
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Kolmogorov's maximal inequality

Proof.

o Let A, = {|Sk| > x} \ U {ISj| > x} be those trials for which the
sum first exceeds x at step k.

@ We have

E[s3] =Y [ stap=3" /A (Sk + (Sn — S))2dP
k=1 k k=1 k

> ’ 5£dP+Z/25k1Ak(5n—Sk)dP.
k=1 k k=1

@ Since Sklp, € o(Xq, ..., Xk), it is independent of S, — Sy, so that the
second sum above is 0. Since |Sk| > x on Ay, it follows that
E [S2] > x? Prob (maxi<x<n |Sk| > x) .

0J

v

Bob Hough Math 639: Lecture 4 February 2, 2017 13 / 56



Convergence of series

Theorem

Let X1, Xz, ... be independent, have E[X;] = 0 and

Z Var(X,) < .
n=1

With probability 1, >, X, converges.
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Convergence of series

Proof.
o Let Sy =" X,

o By Kolmogorov's maximal theorem,

N

p _ -2

rob <M?ax |Sm — Sn| > e> <e Z Var(X,),
n=M+1

SO

Prob<sup = —SM\>€><6 2 Z Var(Xp,).

m>M n=M-+1
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Convergence of series

Proof.
o Let wy = supp, ,>p |Sm — Sn|. We have
m>M

Prob (wy > 2¢) < Prob (sup |Sm — Sm| > e> — 0

as M — o0, so wy J 0 as..

@ Hence Y X, is a.s. Cauchy, hence convergent.
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Convergence of series

Example
Let X3, Xo, ... be i.i.d., taking values 1 with probability % The series

)
Xn
ne
n=1

N[

converges a.s. if o > % and diverges a.s. if 0 <
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Kolmogorov's three-series theorem

Theorem

Let X1, Xo, ... be independent. Let A > 0 and let Y; = Xil(\X,-\gA)- In
order that Y 2 ; X, converge a.s. it is necessary and sufficient that
Q@ > 7 Prob(|X,s| > A) < o0
Q@ > 7, E[Yy] converges
Q > 2, Var(Y,) < co.
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Kolmogorov's three-series theorem

Proof.
@ We postpone the proof of necessity.

@ To prove that the condition is sufficient, note that item 1 implies that
Xn # Yy finitely often with probability 1.

@ The a.s. convergence of ) Y, is now guaranteed by the previous
theorem.
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Kronecker's lemma

Theorem

0 Xp

n—1 2> converges then

If ap, > 0 is an increasing sequence, a, 1 o0 and )

1 n
— Xm — 0.
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Kronecker's lemma

Proof.

Let ap = bp =0 and by =Y 4, 2. By summation by parts,

1 1| <
; Xm = ; {Z am(bm - bm—l)}

m=1

o u (am - am—l)
= bn = Z aibmfl-

m=1 n

Since b, tends to a limit, and a, 1 oo,

n

lim by — Y {am = am-1)

n—00 an

bm-1=0.

m=1
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Rates of convergence

The following is a cheap version of the law of the iterated logarithm.
Theorem

Let X1, Xa, ... be i.i.d. random variables satisfying E[X;] = 0 and
E[X?] =02 < cc. Let S, = X1 + -+ X,. Then fore >0

Sn
ﬁ % 0 a.s..
n2(log n)2"¢
v
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Rates of convergence

Proof.

Let a, = n%(log n)%“ for n>2and a; = 1. Then

> 1
Vv =01 —_—
; ar(an) o < +;n(logn)1+26> < 00,

soy o, X" converges a.s.. The claim now follows from Kronecker's
lemma. O
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Random Dirichlet series

Example

e Form a ‘random multiplicative function’ by setting X(1) =1,
choosing X(p), p prime to be i.i.d. £1 with equal probability, and
declaring for all m, n, X(mn) = X(m)X(n).

e For R(s) > 1, the Dirichlet series

o2 =201 (-2

n=1 P

converges absolutely and has an absolutely convergent Euler product.

e With probability 1, log L(s, X) has a holomorphic continuation to
R(s) > 1, so L(s, X) # 0 there.
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Random Dirichlet series

Example
To check the last statement, write

X 1
log L(s, X) = Z [Esp) + absolutely convergent in R(s) > 5

P

X 1
SR (e
Z <x
_ S/ st+1

With probability 1, for any € > 0 the numerator is O.(X27), so that the
integral converges absolutely in R(s) > % giving the holomorphic
extension.
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Rates of convergence

Theorem (Marcinkiewicz, Zygmund)

Let X1, Xa, ... be i.i.d. with E[X;] = 0 and E[|X1|P] < oo where 1 < p < 2.
IfSy=Xi+ -4 X, then 2 — 0 a.s.

npkP
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Rates of convergence

Proof.

oLetYk:Xkl( and T, =Y1+---+ Y,

|Xk|§k%)
@ We have
> Prob(Yi # Xi) = > Prob (| Xk|P > k) < E[|Xk|?] < oo.
k=1 k=1

Thus Prob( Yy # X i.0.) = 0 by Borel-Cantelli.
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Rates of convergence

Proof.
o Calculate
(o) Ym o0
S (%)< Sl
m=1 me m=1 mp
1
o mP o
< Z/ 2 Prob(1X| > y) dy
m=1"0 mep
& 2
:/ Y 2 Prob(|Xu| > y)dy
0 m>ypP MP

- / P L Prob(|Xa| > y)dy = E[|X|”] < oo.
0

Ol

v
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Rates of convergence

Proof.

@ Applying the theorem on convergence of series and Kronecker's

lemma,
n

075> (Y — E[Yal) = 0, a.s.
k=1

@ It remains to verify that N > or _1E[Ym] — 0. To check this, write
E[Ym] =—-E [Xl -1 <|X1| > m%)} so |E[Ym]| is bounded by

E [|X1| 1 (\x1| > m%)} <m HE [|X1|” 1 (yx1| > m%)} .

141 1 .
Since )., m "5 < ne and the expectation tends to 0 as
m — oo, the claim follows.

0

v
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Infinite mean

Theorem

Let X1, Xa, ... be i.i.d. with E[|X1]|] = 0o and let S, = X1 + -+ -+ Xp. Let

ap be a sequence of positive numbers with °~ increasing. Then

limsup,_, o0 E:l = 0 or 0o according as ), Prob(|X1| > a,) < 0o or = oo,
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Infinite mean

Proof.
First suppose ), Prob(|Xi| > an) = 0.

o an e .
@ Since “* is increasing

> " Prob(|X1| > kap) > ) " Prob(|X1| > ayn)

n=1 n=1

1 o
> > Prob(|Xy] > am) = oo.

m=k
In particular, limsup,_, ‘)a(:' = oo with probability 1 by
Borel-Cantelli.
[ Xal

e Since max(|S,-1/,|Sa|) > 5", the claim follows.
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Infinite mean

Proof.
Now suppose >, Prob(|Xi| > a,) < oc.

o Define Y, = X,1(|X,s| < an). Since X, # Y, finitely often a.s., the

proof consists in checking that > Var (
LS LE[Ym] — 0.

an

o Calculate

)<ooand

n=1 n=1 f
(o) [e.e]
— 2 —2
-y / PdF(y) Y a
m= [am—1.2m) n=m
[]
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Infinite mean

Proof.
Now suppose >, Prob(|X1| > a,) < oc.
0 _ 2 _
e Since a, > 1m 300 572 < ;"—sziimn 2« %

n=—m
@ Thus

ZVar( ><<ZmProb(am 1 < |Xi] < am)

Z Prob(|X1| > am_1) < oo.
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Infinite mean

Proof.

@ To prove the mean condition, first, since E[|X;|] = oo and
> meq Prob(|Xj| > a,) < oo, we have 2 1 oo.
e Bound

n

ai > E[Yal

M m=1

1 n
< P Z E[|[Xml| - 1(|Xm| < am)]
M m=1

na
< N

n
T ; E[|X1| . l(aN S |X1‘ S a,,)] 0

n

o If N grows sufficiently slowly, the first term tends to 0.
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Infinite mean

Proof.
e Bound J-E[|X1] - 1(ay < [Xi| < ap)] by

n

m
> S ElIXdl - Lam-1 < 1X1] < am)]
m=N+1 m

oo
< Z mProb(am—1 < [Xi] < am).
m=N+1

Since
Z mProb(am—1 < [Xi]| < am) = Z Prob(|X1| > ap—1) < o0,
m=1 n=1

the latter tends to 0 as N — co.

Ol

v
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Large deviations

Let X1, Xo, ... be i.i.d., E[X1] = u, || < co. We are interested in the tail
probability
Prob(S, > na)

for a > p. Define m, = Prob(S, > na) and ~, = log 7.

Lemma
For m,n>1,
Tmtn 2 TmTp.

Proof.

This follows from the independence, since

Tmtn > Prob (Sm > ma, Spim — Sm > na) = wmmp.
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Large deviations

Lemma

Let a, be a sequence satisfying am+n > am + an. Then

c dp dn
lim — — sup —.
n—oo N non

Proof.
@ Since limsup 22 < sup 2 it suffices to check liminf 2 > 2.
@ Given n>m, write n=km+ /¢, 0 </ < m. We have

an km am  ay
> ==
n — \km+/¢) m n

Letting n — oo proves the claim.

Ol

V.

Bob Hough Math 639: Lecture 4 February 2, 2017 37 / 56



Large deviations

Define y(a) = limp_, % log Prob (S, > na). This exists by the previous
lemma. Furthermore,

Prob(S, > na) < eM(@)
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Moment generating function

Definition

The moment generating function for a random variable X is

¢(0) = E["X].
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Moment generating function

We assume that ¢(6) < oo for some 6 > 0. By Markov's inequality,

E[exp(05n)] = #(6)",
xp (—n(fa — log ¢(0))) -

e’ Prob(S, > na)

<
Prob(S, > na) <e

Let 0+ = sup{f : ¢(0) < oo}.
Lemma
log ¢(0) is continuous at 0, differentiable on (0,0, ) and satisfies

limg, 0 ﬁs((a) = E[X].
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Moment generating function

Proof.
Each of the statements follows by dominated convergence.

@ For instance, to prove the continuity at 0, for 0 < 6 < 6y < 0, use
e¥* < 1 4 e to take the limit as 6 | 0.

@ We proved in Lecture 2 that it's possible to differentiate under the
expectation, from which the remaining two claims follow.
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Weighted distribution

To prove the lower bound, consider the distribution function

1 X
Fi(x) = / eV dF(y).
9= 509 v)
Note that this distribution has mean

5 erarn) =20

$(AN) J oo ¢(A)
Lemma
We have Z,'_EE = e Mp(\)".
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Weighted distribution

Proof.
We check this by induction. For n = 1 the claim holds by definition. Write

F(z) = F™1 % F(2) = / T dF () / AR G)

—00 —00

— ()" / dF7(x) / 1y <nye TRy ()

— 00

n _ A A
=¢(A\)"E (1(5,?‘_1+X>‘)Sze A(SHJFX"))

:¢(A)”/z e MdF(u).

—00
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Tail probability

Suppose that the distribution of X is not a point mass at u. It follows

that % is strictly increasing by convexity. If a > u then there is at most
one solution to the ‘saddle point’ equation

_ 4(0,)
9(0)

a

Theorem

Suppose there is 0, € (0,0,) such that a = ‘g((g:)). Then, as n — oo,

1
- log Prob(S, > na) — —af, + log ¢(6.,).
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Tail probability

Proof.
The upper bound in the limit follows from taking 6 = 6, in the inequality

Prob(S, > na) < exp(—n(af — log ¢(6))).
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Tail probability

Proof.
To prove the lower bound, use the weighted distribution F),

nb
Prob(S, > na) > / e M p(\)"dF{(x)

nha

> ¢(N)"e A"P(FR(nb) — FY(na)).

@ Choose A such that a < % < b.

o By the weak law of large numbers, F{(nb) — F{(na) — 1 as n — oc.
Letting b | a proves the claim.

O

v
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Examples

Example (Normal distribution)

The standard normal distribution has exponential generating function

o0) == [

02
e2

V21 J—oo

(e e]

Hence 6, = a and 7y, = —af, + log ¢(0,) = —%

2
e’ exp (—%) dx

_ (x=6)?
e 2

92

dx =ez2.

N

? .

Bob Hough
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Examples

Example (Exponential distribution)

The exponential distribution with parameter 1 has exponential generating
function

_ > Ox —x _
¢(9)_/0 e”"e dX—l_e,

Hence %(9) = 1716, s0f,=1- % and

v(a) = —af, —log(1 —0,) = —a+ 1+ loga.

Bob Hough Math 639: Lecture 4 February 2, 2017 48 / 56



Characteristic functions

Definition

The characteristic function of random variable X is

é(t) = E [e"fx} :

For real valued random variables, the characteristic function exists for all
real t, which gives the characteristic function an advantage over the
moment generating function.
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Characteristic functions

Note the following easy properties of characteristic functions.

Theorem
The characteristic function ¢(t) of X satisfies
o ¢(0) =1.
o ¢(~t) = 3(0).
o |¢(t)| <1, with equality if and only if t = 0 or supp(X) C ZZ + c.
o |6(t + ) — o(t)] < E[je™ — 1]].
o FE [eit(aX-i-b)] _ eitbgf)(at).
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Characteristic functions

Proof.
@ The first two items are immediate.
o For the third, if t # 0 and supp(X) € 2XZ + ¢ then e™X = eitc a.s.

° Gomg in the reverse direction, suppose t # 0 and qb(t) = e . Then
X=X- % has o(t) = 1, from which it follows that X € Z a.s.

(*]
@t + h) — ¢(t)] = | E[e X — ]|
< E”ei(t+h)X _ eitX|] _ E[|eihX _ 1’]
° E[eit(aX+b)] — oith E[eitaX] — eitbqﬁ(at).
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Characteristic functions

Theorem

If X1 and X5 are independent and have characteristic functions ¢1 and ¢,
then X1 + Xo has characteristic function ¢1(t)pa(t).

Proof.
We have
E |:elt(X1+X2)] = [eltxleltX2] = |:eltX1i| E |:eltX2] )
[]
V.
R,
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Characteristic functions

Example (Classical characteristic functions)
o (Coin flips) If Prob(X = 1) = Prob(X = —1) = 1, then
+ et

, oit
E[e™] = ——y — =cost.

o (Poisson distribution) If Prob(X = k) = e‘Ai‘(—f for k=0,1,2,...,
then

E [e"tx} = i e Akljitk = exp ()\(eit —-1)).
k=0 ’
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Characteristic functions

Example (Classical characteristic functions)

2

o (Normal distribution) The standard normal with density e;; has

t

o(t) = e~ 2. To check this,

o(t) = \/L /OO e‘é‘mxdx

t2 x lt
= e 2 dX
\V2m /

The last integral may be treated as a complex contour to complete
the evaluation.
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Characteristic functions

Example (Classical characteristic functions)

o (Uniform distribution on (a, b)) The density ;- on (a, b) has
itb ita

o(t) = Sy -
o (Triangular distribution, or Féjer kernel) The density 1 — |x| on
(—1,1) has characteristic function

o(t) = <25itn£>2

To check this, note that the density is the sum of two independent
variables which are uniform on (—%, %)

Bob Hough Math 639: Lecture 4 February 2, 2017 55 / 56



Characteristic functions

Example (Classical characteristic functions)
o (Exponential distribution) The density e™ on (0, c0) has

1
1—it

o(t) = /0 " ety —

o (Bilateral exponential) The density e~ on R has ¢(t) = 1+t2

o (Cauchy distribution) The density ( y has o(t) = exp(—|t|).
This follows from the previous caIcuIatlon and the fact that the
Fourier transform is an involution L% — L2.

Bob Hough Math 639: Lecture 4 February 2, 2017 56 / 56



