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Convergence in probability

Definition

A sequence of random variables {Yn} converges to Y in probability if for
all ε > 0,

Prob(|Yn − Y | > ε)→ 0

as n→∞.
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Uncorrelated variables

Recall that random variables X1,X2 are said to be uncorrelated if
E
[
X 2

1

]
<∞, E

[
X 2

2

]
<∞ and E[X1X2] = E[X1] E[X2].

Theorem

Let X1, ...,Xn be uncorrelated random variables satisfying E
[
X 2
i

]
<∞.

Then
Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn).
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Uncorrelated variables

Proof.

We may assume that each variable is mean 0, since both sides of the
equation are unchanged under translation.

We have

E
[
(X1 + · · ·+ Xn)2

]
= E

[
X 2

1

]
+ · · ·+ E

[
X 2
n

]
,

since the cross-terms vanish.
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Convergence in probability

Lemma

If p > 0 and E [|Zn|p]→ 0 as n→∞ then Zn → 0 in probability.

Proof.

By Markov’s inequality, for each ε > 0, Prob(|Zn| ≥ ε) ≤ ε−p E [|Zn|p],
which gives the claim.
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L2 weak law

Theorem (L2 weak law)

Let X1,X2, ... be uncorrelated random variables satisfying E[Xi ] = µ and
Var(Xi ) ≤ C <∞. If Sn = X1 + ...+ Xn then as n→∞, Sn

n → µ in L2

and in probability.
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L2 weak law

Proof.

Observe

E

[(
Sn
n
− µ

)2
]

= Var

(
Sn
n

)
=

1

n2
(Var(X1) + ...+ Var(Xn)) ≤ Cn

n2
→ 0.

This proves convergence in L2. Convergence in probability follows from the
previous lemma.
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Independent and identically distributed

Definition

A sequence of random variables X1,X2,X3, ... which have the same
distribution and are independent are called independent and identically
distributed or i.i.d..

The L2 weak law applies to i.i.d. variables of finite variance.
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Weierstrass approximation theorem

Example

Let f be a continuous function on [0, 1]. The Bernstein polynomial of
degree n associated to f is

fn(x) =
n∑

m=0

(
n

m

)
xm(1− x)n−mf

(m
n

)
.

As a consequence of the weak law, we show that fn(x)→ f (x) uniformly
as n→∞.
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Weierstrass approximation theorem

Proof.

Let Sn be the sum of n i.i.d. random variables satisfying
Prob(Xi = 1) = p, Prob(Xi = 0) = 1− p. Thus E[Xi ] = p,
Var[Xi ] = p − p2.

Note

Prob(Sn = m) =

(
n

m

)
pm(1− p)n−m,

thus E
[
f
(
Sn
n

)]
= fn(p).

Given δ > 0, by Chebyshev’s inequality,

Prob

(∣∣∣∣Snn − p

∣∣∣∣ > δ

)
≤

Var
(
Sn
n

)
δ2

=
p(1− p)

nδ2
≤ 1

4nδ2
.
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Weierstrass approximation theorem

Proof.

Let δ > 0 be such that |x − y | < δ implies |f (x)− f (y)| < ε, and let
M = supx∈[0,1] |f (x)|.
We have∣∣∣∣E [f (Sn

n

)]
− f (p)

∣∣∣∣ ≤ E

[∣∣∣∣f (Sn
n

)
− f (p)

∣∣∣∣]
≤ ε+ 2M Prob

(∣∣∣∣Snn − p

∣∣∣∣ > δ

)
≤ ε+

M

2nδ2
.

The claim follows.
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Concentration of the 2-norm

Example

Let X1, ...,Xn be independent and uniformly distributed on (−1, 1).
Their joint distribution is uniform measure on the cube (−1, 1)n.

Let Yi = X 2
i . These variables are independent and satisfy E[Yi ] = 1

3
and Var[Yi ] ≤ E

[
Y 2
i

]
≤ 1.

The weak law implies 1
n

(
X 2

1 + · · ·+ X 2
n

)
→ 1

3 in probability, as
n→∞.

Given 0 < ε < 1, let

An,ε =

{
x ∈ Rn : (1− ε)

√
n

3
< ‖x‖2 < (1 + ε)

√
n

3

}
.

By the weak law,
|An,ε∩(−1,1)n|

2n → 1.
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L2 weak law, again

A slightly stronger variant of the L2 weak law is as follows.

Theorem (L2 weak law)

Let X1,X2, ...,Xn be random variables satisfying E
[
X 2
i

]
<∞, and let

Sn = X1 + · · ·+ Xn. Let µn = E[Sn] and σ2
n = Var(Sn). Let {bn} be a

sequence of non-zero numbers such that σ2
n

b2
n
→ 0. Then Sn−µn

bn
→ 0 in

probability.

Proof.

Since E

[(
Sn−µn
bn

)2
]

= Var[Sn]
b2
n
→ 0, the conclusion follows from

Chebyshev’s inequality.
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Coupon collector’s problem

Let X1,X2, ... be i.i.d. on {1, 2, ..., n}
Let τnk = inf{m : |{X1, ...,Xm}| = k} be the waiting time until
collecting the kth distinct coupon. Set τn0 = 0.

We are interested in Tn = τnn , the waiting time until collecting a
complete set of coupons.
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Coupon collector’s problem

Let Yn,k = τnk − τnk−1 be the incremental waiting time to collect the
kth coupon. Yn,k has a geometric distribution with parameter
1− k−1

n .

A geometric distribution with parameter p has mean 1
p and variance

≤ 1
p2 .

Hence Tn =
∑n

k=1 Yn,k satisfies

E [Tn] =
n∑

k=1

(
1− k − 1

n

)−1

= n
n∑

k=1

1

k
∼ n log n

Var [Tn] ≤
n∑

k=1

(
1− k − 1

n

)2

< n2
∞∑

m=1

1

m2
.

Taking bn = n log n in the previous theorem proves
Tn−n

∑n
m=1

1
m

n log n → 0

in probability, or Tn
n log n → 1 in probability.
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Random permutations

The cycle representation of a permutation π on {1, 2, ..., n} is found by
writing

(1, π(1), π2(1), ..., πk−1(1))

where k is the least positive integer such that πk(1) = 1, then repeating
this process starting with the least number not contained in
1, π(1), ..., πk−1(1), and iterating. For example, the permutation

i 1 2 3 4 5 6 7 8 9
π(i) 3 9 6 8 2 1 5 4 7

has cycle structure (1, 3, 6)(2, 9, 7, 5)(4, 8).
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Random permutations

Let π be chosen at uniform from the symmetric group Sn on n letters.

Let Xn,k indicate the event that the kth letter in the cycle structure of
π closes a cycle, and let Sn =

∑n
k=1 Xn,k denote the number of cycles.
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Random permutations

Lemma

The events Xn,1, ...,Xn,n are independent, and Prob(Xn,j = 1) = 1
n−j+1 .

Proof.

Build the cycle structure at random left to right, starting from 1, by
assigning π(i) only once i is reached in the cycle structure.

The number of choices for π(i) is n− k + 1 where k is the position of
i in the cycle structure, and exactly one choice leads to completing a
cycle.
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Random permutations

By the previous lemma,

E[Sn] =
1

n
+

1

n − 1
+ ...+ 1

Var[Sn] =
n∑

k=1

Var[Xn,k ] ≤
n∑

k=1

E
[
X 2
n,k

]
≤ E[Sn].

It follows that for ε > 0,

Sn −
∑n

m=1
1
m

(log n)
1
2

+ε
→ 0

in probability.
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Occupancy

Suppose that r balls are dropped independently at random in n boxes,
so that each of nr assignments is equally likely.

Let Ai be the event that box i is empty, and N =
∑

i Ai the number
of empty boxes.

We have

Prob[Ai ] =

(
1− 1

n

)r

, E[N] = n

(
1− 1

n

)r

.

If r/n→ c then 1
n E[N]→ e−c .
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Occupancy

Calculate

E
[
N2
]

= E

( n∑
m=1

1Am

)2
 =

∑
1≤k,m≤n

Prob(Ak ∩ Am)

Var[N] = E
[
N2
]
− E[N]2

=
∑

1≤k,m≤n
Prob(Ak ∩ Am)− Prob(Ak) Prob(Am)

= n(n − 1)

[(
1− 2

n

)r

−
(

1− 1

n

)2r
]

+ O(n)

= O(n).

It follows that N
n → e−c in probability.
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Triangular arrays

Definition

A triangular array of random variables is a collection {Xn,k}1≤k≤n. Many
classical limit theorems of probability theory apply to the row sums

Sn =
∑

1≤k≤n
Xn,k .
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Truncation

Definition

Let M > 0. The truncation at height M of random variable X is

X = X1(|X |≤M) =

{
X |X | ≤ M
0 |X | > M

.
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Weak law for triangular arrays

Theorem (Weak law for triangular arrays)

For each n let Xn,k , 1 ≤ k ≤ n, be independent. Let bn > 0 with bn →∞,
and let X n,k = Xn,k1(|Xn,k |≤bn). Suppose that as n→∞,∑n

k=1 Prob(|Xn,k | > bn)→ 0, and

b−2
n

∑n
k=1 E

[
X

2
n,k

]
→ 0.

Set Sn = Xn,1 + Xn,2 + ...+ Xn,n and an =
∑n

k=1 E[X n,k ]. Then
Sn−an
bn
→ 0 in probability.
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Weak law for triangular arrays

Proof.

Let Sn = X n,1 + · · ·+ X n,n. Bound

Prob

(∣∣∣∣Sn − an
bn

∣∣∣∣ > ε

)
≤ Prob(Sn 6= Sn) + Prob

(∣∣∣∣Sn − an
bn

∣∣∣∣ > ε

)
.

Use a union bound to estimate

Prob(Sn 6= Sn) ≤ Prob

(
n⋃

k=1

{Xn,k 6= X n,k}

)

≤
n∑

k=1

Prob(|Xn,k | > bn)→ 0.
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Weak law for triangular arrays

Proof.

The second term is bounded by

Prob

(∣∣∣∣Sn − an
bn

∣∣∣∣ > ε

)
≤ Var[Sn]

ε2b2
n

≤ (bnε)
−2

n∑
k=1

E
[
X

2
n,k

]
→ 0.
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Moments

Lemma

If Y ≥ 0 and p > 0 then E [Y p] =
∫∞

0 pyp−1 Prob[Y > y ]dy .
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Moments

Proof.

By Fubini’s theorem for non-negative random variables,∫ ∞
0

pyp−1 Prob[Y > y ]dy =

∫ ∞
0

∫
Ω
pyp−11(Y>y)dPdy

=

∫
Ω

∫ ∞
0

pyp−11(Y>y)dydP

=

∫
Ω

∫ Y

0
pyp−1dydP =

∫
Ω
Y p = E [Y p] .
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The weak law of large numbers

Theorem

Let X1,X2, ... be i.i.d. with

x Prob(|Xi | > x)→ 0, x →∞.

Let Sn = X1 + · · ·+ Xn and let µn = E
[
X11(|X1|≤n)

]
. Then Sn

n − µn → 0
in probability.
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The weak law of large numbers

Proof.

We apply the weak law for triangular arrays with Xn,k = Xn and with
bn = n. There are two conditions to check. The first is satisfied, since

n∑
k=1

Prob(|Xn,k | > n) = nProb(|Xi | > n)→ 0.

To prove the second condition, it suffices to check that
1
n2

∑n
k=1 E

[
X

2
n,k

]
= 1

n E
[
X

2
n,1

]
→ 0. This follows, since

1

n
E
[
X

2
n,1

]
≤ 1

n

∫ n

0
2y Prob[|X1| > y ]dy → 0.
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The weak law of large numbers

Theorem

Let X1,X2, ... be i.i.d. with E[|Xi |] <∞. Let Sn = X1 + · · ·+ Xn, and let
µ = E[X1]. Then Sn

n → µ in probability.

Proof.

The condition of the previous weak law is met, since
x Prob(|Xi | > x) ≤ E

[
|Xi |1(|Xi |>x)

]
→ 0 as x →∞. The theorem now

follows, since µn → µ as n→∞, by dominated convergence.
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The Cauchy distribution

The Cauchy distribution has density 1
π(1+x2)

.

If X1, ...,Xn are i.i.d. Cauchy, then 1
n

∑n
i=1 Xi is again Cauchy of the

same distribution. This may be readily checked with characteristic
functions, we postpone the proof.

Thus the Cauchy distribution is a distribution for which a weak law
does not hold.
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The “St. Petersburg paradox”

Theorem

Let X1,X2, ... be i.i.d., satisfying

Prob[Xi = 2j ] = 2−j , j ≥ 1.

Let Sn = X1 + · · ·+ Xn. We have Sn
n log2 n

→ 1 in probability as n→∞.
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The “St. Petersburg paradox”

Proof.

We apply the weak law for triangular arrays with bn tending to ∞
faster than n but slower than n log n.

Since Prob[X1 ≥ 2m] =
∑∞

j=m 2−j ≤ 2−m+1, this condition
guarantees that nProb[X1 ≥ bn]→ 0 as n→∞.

To check the second condition, note that X n,k = Xk1(|Xk |≤bn) satisfies

E
[
X

2
n,k

]
=
∑

j :2j≤bn

22j2−j ≤ 2bn.

In particular, 1
b2
n

∑n
k=1 E

[
X

2
n,k

]
= O

(
n
bn

)
→ 0.

We have an = E
[
X n,k

]
=
∑

j :2j≤bn 2j2−j ∼ log2 bj ∼ log2 n.

It follows that Sn−nan
bn

→ 0 and hence Sn
n log2 n

→ 1 in probability.
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The Borel-Cantelli Lemmas

Definition

Given An a sequence of subsets of Ω, let

lim supAn = lim
m→∞

∞⋃
n=m

An = {ω : in infinitely many An}

lim inf An = lim
m→∞

∞⋂
n=m

An = {ω : in all but finitely many An}.
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First Borel-Cantelli Lemma

Theorem (First Borel-Cantelli lemma)

If
∑∞

n=1 Prob[An] <∞ then Prob [An i.o.] = 0.

Proof.

Let N =
∑

k 1Ak
. Since E[N] =

∑
k Prob[Ak ] <∞, we have N <∞

a.s..
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Convergence in probability

Theorem

Xn → X in probability if and only if for every subsequence Xn(m) there is a
further subsequence Xn(mk ) that converges almost surely to X .
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Convergence in probability

Proof.

For the forward direction, for each k there is an n(mk) > n(mk−1) so
that Prob

[
|Xn(mk ) − X | > 1

k

]
≤ 2−k . Since

∞∑
k=1

Prob

[∣∣Xn(mk ) − X
∣∣ > 1

k

]
<∞

Thus only finitely many events occur a.s. so Xn(mk ) → X a.s..

To prove the reverse direction, consider the sequence
yn = Prob(|Xn − X | > δ). The conclusion follows from the
observation that, in a topological space, if every subsequence of {yn}
has a sub-subsequence converging to y , then yn → y .
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Convergence of functions

Theorem

If f is continuous and Xn → X in probability then f (Xn)→ f (X ) in
probability. If, in addition, f is bounded, then E[f (Xn)]→ E[f (X )].
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Convergence of functions

Proof.

Let Xn(m) be a subsequence, with sub-subsequence Xn(mk ) → X a.s.

By continuity, f (Xn(mk ))→ f (X ), a.s. which proves the convergence
in probability.

When f is bounded, E[f (Xn(mk ))]→ E[f (X )], which suffices for the
second claim.
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Strong law of large numbers

Theorem

Let X1,X2, ... be an i.i.d. sequence satisfying E[Xi ] = µ and E
[
X 4
i

]
<∞.

If Sn = X1 + · · ·+ Xn then Sn
n → µ a.s.
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Strong law of large numbers

Proof.

We can assume µ = 0 by making a translation.

Expand

E
[
S4
n

]
= E

 ∑
1≤i ,j ,k,l≤n

XiXjXkXl

 .
Since E[Xi ] = 0, the only terms which survive the expectation are of
the form X 4

i or X 2
i X

2
j , i 6= j . Thus E

[
S4
n

]
= O(n2).

It follows that Prob [|Sn| > nε] = O
(

1
n2ε4

)
, so only finitely many of

these events occur by Borel-Cantelli.
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The second Borel-Cantelli lemma

Theorem

If events An are independent, the
∑∞

n=1 Prob[An] =∞ implies
Prob[An i.o.] = 1.
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The second Borel-Cantelli lemma

Proof.

Let M < N <∞. By independence and the inequality (1− x) ≤ e−x ,

Prob

(
N⋂

n=M

Ac
n

)
=

N∏
n=M

(1− Prob(An)) ≤ exp

(
−

N∑
n=M

Prob(An)

)
→ 0

as N →∞. Thus Prob (
⋃∞

n=M An) = 1 for all M. Since⋃∞
n=M An ↓ lim supAn we obtain Prob(lim supAn) = 1.
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Failure of the strong law

Corollary

If X1,X2, ... are i.i.d. with E[|Xi |] =∞, then
Prob

[
limn

Sn
n exists ∈ (−∞,∞)

]
= 0.

Proof.

We have

E [|X1|] =

∫ ∞
0

Prob(|X1| > x)dx ≤
∞∑
n=0

Prob(|X1| > n).

Thus, by independence and the second Borel-Cantelli lemma, the event
|Xn| > n occurs infinitely often with probability 1, which is sufficient to
guarantee the non-convergence.
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Stronger Borel-Cantelli

Theorem

If A1,A2, ... are pairwise independent and
∑∞

n=1 Prob(An) =∞, then as
n→∞

n∑
m=1

1Am

/
n∑

m=1

Prob(Am)→ 1 a.s.
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Stronger Borel-Cantelli

Proof.

Let Xm = 1Am and Sn = X1 + ...+ Xn.

By pairwise independence, Var(Sn) = Var(X1) + ...+ Var(Xn). Since
each Xn is an indicator variable, Var(Sn) ≤ E[Sn]. Thus,

Prob (|Sn − E[Sn]| > δ E[Sn]) ≤ 1

δ2 E[Sn]
.

Let nk = inf{n : E[Sn] > k2} and let Tk = Snk . By summability of∑
k

1
E[Tk ] we find that Tk/E[Tk ]→ 1 a.s.

To conclude the theorem in general, note that for nk < n < nk+1, use

Tk

E[Tk+1]
≤ Sn

E[Sn]
≤ Tk+1

E[Tk ]

and E[Tk+1]
E[Tk ] → 1.
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Record values

Example (Record values)

Let X1,X2, ... be i.i.d. random variables having a continuous
distribution.

Let Ak = {Xk > supj<k Xj} be the event of a record at index k .

Since the distributions are continuous, Xi 6= Xj a.s.. The ordering of
X1,X2, ...,Xk induces the uniform measure on permutations in Sk ,
since for any permutation σ, (X1, ...,Xk) and (Xσ(1), ...,Xσ(k)) are
equal in distribution.

Hence A1,A2, ... are independent and Prob(Ak) = 1
k .

By the strong law of large numbers, Rn =
∑n

m=1 1Am satisfies as
n→∞

Rn

log n
→ 1, a.s.
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Head runs

Example (Head runs)

Let Xn, n ∈ Z be i.i.d. with Prob(Xn = 1) = Prob(Xn = −1) = 1
2 .

Let `n = max{m : Xn−m+1 = · · · = Xn = 1} be the length of the run
of 1’s at time n, and let Ln = max1≤m≤n `m. We show Ln

log2 n
→ 1, a.s.

Since Prob(`n ≥ (1 + ε) log2 n) ≤ n−(1+ε) is summable, this event
happens finitely often with probability 1, by Borel-Cantelli.
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Head runs

Example (Head runs)

To prove the lower bound, let n = 2k and split the block between
[n/2, n) into pieces of length [(1− ε) log2 n] + 1.

Each of these is entirely 1 with probability � n−1+ε, and the events
are independent.

There are � n
log n events in the block, so that, summed over the block

their probabilities sum to � nε/2.

Summing in blocks, infinitely many of the events occur with
probability 1, by Borel-Cantelli.
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Strong law of large numbers

Theorem (Strong law of large numbers)

Let X1,X2, ... be pairwise independent identically distributed random
variables with E[|Xi |] <∞. Let E[Xi ] = µ and Sn = X1 + · · ·+ Xn. Then
Sn
n → µ a.s.

Bob Hough Math 639: Lecture 3 January 31, 2017 51 / 62



Strong law of large numbers

Lemma

Let Yk = Xk1(|Xk |≤k) and Tn = Y1 + · · ·+ Yn. It is sufficient to prove that
Tn/n→ µ a.s.

Proof.

Observe
∑

k Prob(|Xk | > k) ≤
∫∞

0 Prob(|X1| > t)dt = E[|X1|] <∞. Thus
Prob(Yk 6= Xk i.o.) = 0. It follows that

sup
n
|Tn(ω)− Sn(ω)| <∞, a.s.,

which suffices for the claim.
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Strong law of large numbers

Lemma

We have
∑

k
Var(Yk )

k2 <∞.

Proof.

Write ∑
k

E
[
Y 2
k

]
k2

≤
∞∑
k=1

k−2

∫ ∞
0

1(y<k)2y Prob(|X1| > y)dy

=

∫ ∞
0

{ ∞∑
k=1

k−21(y<k)

}
2y Prob(|X1| > y)dy

�
∫ ∞

0
Prob(|X1| > y)dy = E[|X1|] <∞.
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Strong law of large numbers

Proof of the strong law.

It suffices to prove the theorem for Xn ≥ 0, since the general case may be
separated into positive and negative parts.

Let α > 1 and set k(n) = [αn]. Recall Tn = Y1 + ...+ Yn.

By Chebyshev’s inequality, for ε > 0,

∞∑
n=1

Prob
(
|Tk(n) − E[Tk(n)]| > εk(n)

)
≤ ε−2

∞∑
n=1

Var(Tk(n))

k(n)2

= ε−2
∞∑
n=1

k(n)−2

k(n)∑
m=1

Var(Ym) = ε−2
∞∑

m=1

Var(Ym)
∑

n:k(n)≥m

k(n)−2

� ε−2
∞∑

m=1

Var(Ym)

m2
<∞.
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Strong law of large numbers

Proof of the strong law.

It follows that (Tk(n) − E[Tk(n)])/k(n)→ 0 a.s. Meanwhile,
E[Tk(n)]

k(n) → E[X1] by dominated convergence.

For k(n) ≤ m < k(n + 1)

Tk(n)

k(n + 1)
≤ Tm

m
≤

Tk(n+1)

k(n)
.

Since k(n+1)
k(n) → α, we have a.s.

1

α
E[X1] ≤ lim inf

n→∞

Tm

m
≤ lim sup

m→∞

Tm

m
≤ αE[X1].

Since α > 1 was arbitrary, the limit follows.
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Strong law of large numbers

Theorem

Let X1,X2, ... be i.i.d. with E[Xi ] =∞ and E[|X−i |] <∞. Let
Sn = X1 + · · ·+ Xn. Then Sn

n →∞ a.s.
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Strong law of large numbers

Proof.

Let M > 0 and set XM
i = min(Xi ,M). By the strong law,

1
n

∑n
i=1 X

M
i → E[XM

i ] a.s. as n→∞. Hence

lim inf
n→∞

Sn
n
≥ E

[
XM
i

]
.

Since E
[
XM
i

]
→∞ as M →∞, the claim follows.
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Renewal theory

Let X1,X2, ... be i.i.d. with 0 < Xi <∞. Let Tn = X1 + · · ·+ Xn and

Nt = sup{n : Tn ≤ t}.

Given a sequence of events which happen in succession with waiting time
Xn to the nth event, we think of Nt as the number of events which have
happened up to time t.

Theorem

If E[X1] = µ ≤ ∞, then as t →∞,

Nt

t
→ 1

µ
a.s..
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Renewal theory

Proof.

Since T (Nt) ≤ t < T (Nt + 1), dividing through by Nt gives

T (Nt)

Nt
≤ t

Nt
≤ T (Nt + 1)

Nt + 1

Nt + 1

Nt
.

We have Nt →∞ a.s.. Hence, by the strong law,

TNt

Nt
→ µ,

Nt + 1

Nt
→ 1.
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Empirical distribution functions

Let X1,X2, ... be i.i.d. with distribution F and let

Fn(x) =
1

n

n∑
m=1

1(Xm≤x).

Theorem (Glivenko-Cantelli Theorem)

As n→∞,
sup
x
|Fn(x)− F (x)| → 0 a.s..
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Empirical distribution functions

Proof.

Note that F is increasing, but can have jumps.

For k = 1, 2, ..., and 1 ≤ j ≤ k − 1, define xj ,k = inf{x : F (x) ≥ j
k }.

Set x0,k = −∞, xk,k =∞.

Write F (x−) = limy↑x F (y).

Since each of Fn(xj ,k−) and Fn(xj ,k) converges by the strong law, and
Fn(xj ,k−)− Fn(xj−1,k) ≤ 1

k , the uniform convergence follows.
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Entropy

Let X1,X2, ... be i.i.d., taking values in {1, 2, ..., r} with all
possibilities of positive probability. Set Prob(Xi = k) = p(k) > 0.

Let πn(ω) = p(X1(ω))p(X2(ω))...p(Xn(ω)). By the strong law, a.s.

−1

n
log πn → H ≡ −

r∑
k=1

p(k) log p(k).

The constant H is called the entropy.
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