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The Gaussian free field

This lecture loosely follows Berestycki's ‘Introduction to the Gaussian Free
Field and Liouville Quantum Gravity'.
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[to's formula

The multidimensional 1t6's formula is as follows.
Theorem (Multidimensional 1td’s formula)

Let {B(t):t > 0} be a d-dimensional Brownian motion and suppose
{C(s) : s = 0} is a continuous, adapted stochastic process with values in
R™ and increasing components. Let f : R‘”’" — R satisfy

e 0if and Ojf, all1 < j, k <d, d+1<i<d+ m are continuous
o Ef;|Vxf(B(s),¢(s))[?ds < o0
then a.s. forall0 <s <t

F(B(s), ¢(s)) — F(B f V. F(B(u), C(u) - dB(u)

f Y F(B() () d6(0) + 5 [ Aef(B(u):C(u))ds
0
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Conformal maps

Definition
Let U and V be domains in R?. A mapping f : U — V is conformal if it is
a bijection and preserves angles.

Viewed as a map between domains in C, this is equivalent to f is an
analytic bijection.
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Conformal invariance of Brownian motion

The following conformal invariance of Brownian motion may be established
with It6's formula.

Theorem

Let U be a domain in the complex plane, x € U, and let f : U — V be
analytic. Let {B(t):t > 0} be a planar Brownian motion started in x and

Ty =inf{t > 0: B(t) ¢ U}

its first exit time from the domain U. There exists a planar Brownian
motion {B(t) : t = 0} such that, for any t € [0, Ty),

F(B(1) = B(C(1)), f I7(B(s)) [2ds.

If f is conformal, then ((7y) is the first exit time from V by

{B(t): t =0}
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Conformal invariance of Brownian motion

Proof.
@ We assume that the domains are bounded.

@ Recall that if f = f; + if, then the Cauchy-Riemann equations give
Vf and Vf, are orthogonal, and |Vf| = |Vf| = |f'].

o Let o(t) =inf{s = 0:((s) >t}
o Let {B(t): t = 0} be an independent Brownian motion, and define

W(t) = F(B(o(t) A Tu)) + B(t) — B(t A C(10)),  t=0.

o It suffices to check that W(t) is a Brownian motion. Since it is
almost surely continuous, it remains to check the f.d.d.
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Conformal invariance of Brownian motion

Proof.
@ To check the f.d.d. we check for 0 < s < t, and A € C,

E [e<’\’W(t)>’§4(s)] — exp <;|/\\2(t —s)+ W(s)>> .
@ It suffices to check
E [e<)"W(t)>| W(s) = f(x)] — exp (;|/\|2(t — )+, f(x)>) .

We evaluate this at s = 0.
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Conformal invariance of Brownian motion

Proof.

o Calculate

E [e<A,W<t>>

W(0) = f(x)]
il 2
= Exexp (O F(BLo(6) A ) + IR = () A ) ).
o We use It6 with
F(x,u) = exp <<)\, f(x))+ %|)\\2(t - s)) .

Note AeMf D) = | X|2|F!(x)[2eXF 0.

O

v
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Conformal invariance of Brownian motion

Proof.

o Recall F(x,u) = exp ((\, f(x)) + S|A2(t — u)). Set T =o(t) A 7y,
with U, = {x e U : d(x,0U) = 1/n}.

@ Hence
.
F(B(T).C(T)) = F(B(O).C(0) + | VuF(B(s).¢(5) - dB(5)
T 1 T
+ | 2uF(B(e).CoNCs) + 5 [ AF(B(E). e

e Use d((u) = |f'(B(u))|?>du to cancel the two terms on the bottom
line. Also, the stochastic integral has mean 0.
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Conformal invariance of Brownian motion

Proof.

@ We thus calculate
W(0) = £(x)| = Ex[F(B(o(¢) A 70), (o () A Tu)]

— lim Ex[F(B(T),((T))] = F(x,0) = exp (%Wr + (O, f(x)>> .

n—0o0

E [e<A,W(t>>

O]

v
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Discrete case

@ Let G = (V, E) be an undirected graph, and let ¢ be a distinguished
set of vertices, called the boundary.

e Let V = V\0 be the internal vertices.
@ For x,y € V, write x ~ y if x and y are neighbors.

o Let {X,} be a random walk on G, in which at each step the walker
chooses uniformly a random neighbor.

@ Let P be the transition matrix, d(x) = deg(x), which is an invariant
measure for the walk, and let 7 be the first hitting time to the
boundary.
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Discrete case

Definition (Green function)

The Green function G(x,y) is defined for x,y € V by putting

G(x,y) = ﬁ Ex (Z 1(Xn=y;‘r>n)> .

n=0

Definition (Discrete Laplacian)

The discrete Laplacian acts on functions on V by

INGED) ﬁ(f@) — £(x)).

y~x
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Discrete case

Proposition
The following hold:
Q Let P denote the restriction of P to V. Then
(I — P)7Y(x,y) = G(x,y)d(y) forall x,y € V.
@ G is a symmetric nonnegative semidefinite function. That is, one has
G(x,y) = G(y, x) and if (Ax)xev Is a vector then
Yixyev AxAyG(x,y) = 0. Equivalently, all eigenvalues are
non-negative.

Q G(x,) is discrete harmonic in V\{x}, and AG(x,-) = —8(-).
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Discrete case

Definition
The discrete Gaussian free field is the centered Gaussian vector (h(x))xev
with covariance given by the Green function G.

Note that if x € 0, then G(x,y) =0 for all y € V and hence h(x) =0 a.s.
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Discrete case

Theorem (Law of the GFF)

The law of (h(x))xev is absolutely continuous with respect to
dx = [ [,cv dxu, and the joint pdf is given by

Prob(h(x) € A) = ;JA exp <_i Z (Yu — YV)2) H dyu.

u~veV ueV

Z is a normalizing constant, called the partition function.

The quadratic form appearing in the exponential is called the Dirichlet
energy.
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Discrete case

Proof.

@ For a centered Gaussian vector (Y1, ..., Y,) with covariance matrix V/,
the joint density is given by

1 1
— &P (—EyT V_1y>
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Discrete case

Proof.

o Restrict to only variables from V and calculate

h()TGT (%) = Y, G (x,¥)h(x)h(y)

x,yeV

— Z —d(x )ﬁ’(xy Ed
x,yeVix~y xeV/

D ORI §<h<x>2+h<y>2>
X, yEV:x~y X, yeV:x~y

= 3 S0~ Ay

X,yeV:ix~y

Ol

v
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Discrete case

Theorem (Markov property)
Fix U c V. The discrete GFF h(x) can be decomposed as follows:

h=ho+¢

where hg is a Dirichlet boundary Gaussian free field on U and ¢ is
harmonic on U. Moreover, hy and ¢ are independent.

We prove a continuum version of this theorem in the next section.
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Continuum case

For D = RY let pP(x,y) be the transition kernel of Brownian motion

killed on leaving D. Thus

pe (x,y) = pe(x,y)7L (x,y)

2
exp (— L;g" )

where

pelxy) = (2rt)3

and 7P(x, y) is the probability that a Brownian bridge of duration t

remains in D.
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Continuum case

Definition
The Green function G(x,y) = Gp(x,y) is given by

(00]

G(x,y) = WL pe(x,y)dt.

G(x,x) = oo for all x € D, since 72(x,x) — 1 as t — 0. If D is bounded
then G(x,y) < o for all x # y.
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Continuum case

Example
Suppose D = H is the upper half plane. Then
pi(x,y) = pe(x,y) — pe(x,¥) and

Gr(x,y) = log

X—_)_/‘

x—yl|
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Continuum case

We now restrict attention to dimension 2.
Proposition

If T: D — D' is a conformal map (holomorphic and one-to-one), then
Grp)(T(x), T(y)) = Gp(x,y).
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Continuum case

Proof.
@ Let ¢ be a test function and let X',y = T(x), T(y).
@ Then

| Gotynotdy = Ex [ o ;)dt’]

where B’ is Brownian motion and 7’ is the first exit time from D’.
e Since dy’ = |T'(y)|?dy

| 6ot y100)dy' = | Go (TG0, TR(T)IT ) b

Ol

V.
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Continuum case

Proof.

° Apply I1td's formula to the RHS, writing By, = T(Bg-1()) where
Bs)|?ds for t <

]:aLfMTB
|

= 5ol T(
° Calculate

alﬂw;wﬂ

This proves that Gp/ (T (x), T(+)) = Gp(x,

F'(s) ds]

)| T/ (B )]2ds}
T)IT (v)[Pdy.

-) as distributions.

Ol
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Continuum case

Proposition
The following properties hold
@ G(x,-) is harmonic in D\{x} and AG(x,-) = —2mdx(-).
@ G(x,y) = —log(|x — y[) + log R(x; D) + o(1)
where R(x; D) is the conformal radius of x € D, equal to |f'(0)| where f is

any conformal map from the disc D = {z € C : |z| < 1} to D satisfying
f(0) = x.
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Continuum case

Proof.
@ Conformal maps preserve harmonicity, which proves the first property.

@ A conformal map from D — ID which maps 0 to 0 is of the form
f(z) = e®z. To check this, let f be such a map, which necessarily
maps the boundary to itself, and write f(z) = Y77 ; anz",

1 f'(z) 1
- 7 = —
2mi Jiz1=1 f(2) 210 )71

f'(z)f(z)dz = Z n|an|?
n=1

Since ) |a,|> = 1 we get |a1| = 1 and a; = 0 for i > 1. This proves
that the conformal radius is well-defined.

© To calculate the formula for the Green's function, observe that
Gp(0,z) = log|z|, as may be checked by using conformal invariance
and the map ¢(z) = ;=% from the upper half plane to the disc.
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Continuum case

In the continuum case, one thinks of the GFF as a “random function” on a
domain, with mean 0 and covariance given by the Green function.
However, since the Green function is infinite on the diagonal, the GFF is
not defined pointwise, and is instead in a negative Sobolev space.
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Continuum case

Definition
Let D be a domain on which the Green function is finite off the diagonal.

Such a domain is called Greenian. Let .# be the space of positive
measures with compact support on D satisfying

JP(dX)P(dy) G(x,y) < 0.

Let .# be the collection of signed measures p = p; — p_ with py € 4.
For p1, po € 4, define bilinear form

F(p1,p2) 1= JDQ Gp(x, y)p1(dx)p2(dy).

Define ['(p) = T'(p, p).
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Continuum case

Theorem (Zero boundary GFF)

There exists a unique stochastic process (h,) .., indexed by .4, such

that, for every choice p1, ..., pn, (hyy, ..., hy,) is a centered Gaussian vector
with covariance matrix Cov(hy,, h,,) = T (pi, pj).

Definition

The process (hy)pe. is called the Gaussian free field in D with Dirichlet
boundary conditions.

Bob Hough Math 639: Lecture 24 May 11, 2017 29 / 65



Continuum case

Proof.

@ We need to check that the finite-dimensional distributions exist, are
uniquely specified, and are consistent. The consistency is immediate,
since the f.d.d. are Gaussian vectors.

@ To check existence and uniqueness of the f.d.d. we need to show that
[(pi, pj) is symmetric and positive semi-definite.

@ Symmetry follows from symmetry of the Greens function, which
follows from pP(x,y) = pP(y, x).

@ To prove positivity, we need to show,

DX (pispj) =0
iJ

or, equivalently, ['(p) > 0 for all pe ..
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Continuum case

Proof.
@ Recall that Green's formula gives, for f, g in C*(D),

fo-Vg=—f ng—i—J fa—g.
D D op On
o Let pe CX(D) and

Flx) = — f Go(x, y)p(y)dy

so that Af = 2mp.
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Continuum case

Proof.

@ Hence

1

or | 0 | Gl fiy)dyae

_|
—
D
N~—
||

X y
% p(X)J Ay G(x,y)f(y)dydx
X y
- _f f(x)Af(x)dx =f i
P D

@ Thus I'(p,p) =0 for pe CL (D). The claim holds in general by
density.
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Continuum case

e Going forward we write (h, p) for h,. The pairing is linear in p as may
be checked by noting that the mean and variance of the difference
(h,ap + Bp') — a(h, p) — B(h, p') are both 0.

@ The above description gives the GFF with Dirichlet boundary
condition. If f (possibly random) is continuous on the conformal
boundary of the domain D, then the GFF with boundary condition f
is h = hg + ¢ where ¢ is the harmonic extension of f to D, and where
hg is an independent solution of the Dirichlet GFF.
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Distributions

e Write Z(D) = CZ(D) for the space of ‘test functions’ on D. The
topology is defined by f, — 0 in Z(D) if there is a compact set
K < D such that f, is supported in K, and f, and all derivatives
converge to 0 uniformly.

@ A continuous linear map v : Z(D) — R is a distribution on D. This
space is written 2'(D). It is given the weak-* topology, so that
up, — ue€ 2'(D) if and only if u,(p) — u(p) for all pe 2(D).
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Dirichlet energy, Sobolev space

Definition
For f,g € Z(D), their Dirichlet inner product is

1
f = — f- .
(f.8)v = 5 JDV Ve
The Sobolev space H3 (D) is the completion of Z(D) with respect to the

Dirichlet inner product. This consists of L?(D) functions whose gradient is
also in L2(D).

v
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The GFF as a random distribution

We now construct the GFF as a random distribution.
@ Suppose he 2'(D) and f € 2(D). Set p = —Af.

@ By the definition of distributional derivatives

1 1

(hv f)V = _E(haAf) = g(ha P)-

@ This makes (h, f)y a centered Gaussian with variance (rz(:))Q,

Var(h, f)v = | |3

By polarization, Cov((h,f)v,(h,g)v) = (f,&)v.
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The GFF as a random distribution

@ Suppose D is a bounded domain, let {f,} be an orthonormal basis of
H&(D) which are eigenfunctions of —A with increasing eigenvalue A,
and let {X,} be a sequence of i.i.d. standard normals. Set

h= Zan,,.
n

o Weyl's law gives that A\, = nas n — . Let e, be f, scaled to be
orthonormal in L2(D). Since (fy, fa)v = ;—;(fn,Afn)g = é\—;(fn, fn)2 we
have i—:en =f,.

e For s € R, the Sobolev space H*(D) is

H*(D) = {f € Z'(D) : Y (f, en)?\; < 0}

with inner product

(f,g)s = Z(f7 en)(gv en))‘}i'

n
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The GFF as a random distribution

o It follows that h = ) X,f, converges a.s. in H~¢(D) for every € > 0.
e For all f € H}(D),

(h,f)v = > Xn(fa, f)v

converges in L?(Prob) and a.s. by the martingale convergence
theorem. It's limit is a Gaussian with variance

()% = IR

n
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Markov property

Theorem (Markov property)

Fix U < D open and take h a GFF with zero boundary condition on D.
Then we may write

h=ho+ ¢
where
Q hg is a zero boundary condition GFF on U and is zero outside of U.
@ ¢ is harmonic in U.

© ho and ¢ are independent.
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Markov property

Proof.

o We first check that H3(D) = Supp(U) @ Harm(U) where Supp(U) is
the closure of smooth functions of compact support in U and
Harm(U) is functions harmonic in U.

@ The orthogonality of Supp(U) and Harm(U) follows by the
Gauss-Green formula.

e Given f € H}(D), let fy be the orthogonal projection onto Supp(U),
6=f—f.

@ For any test function ¥ € Z(U), (¢,v¢)y = 0, so that

| @ow = | @op-o

so that A¢ = 0 as a distribution in U. By elliptic regularity, ¢ is a
smooth function, and harmonic.

L]
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Markov property

Proof.

e With the L? decomposition, let {f2} be an o.n. basis of Supp(U), and
{¢n} an o.n. basis of Harm(U).

o Let (Xp, Yn) be an i.i.d. sequence of standard Gaussians, and let
hO = Zn anr? and d’ = Zn Yn¢n-

e We have hy converges a.s. in 2'(D) since it is GFF on U.

@ Since hy + ¢ = h, converges a.s. in Z'(D), the series defining ¢
converges a.s., hence is a C® harmonic on U.
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Markov property

Proof.

e With the L? decomposition, let {f2} be an o.n. basis of Supp(U), and
{¢n} an o.n. basis of Harm(U).

o Let (Xp, Yn) be an i.i.d. sequence of standard Gaussians, and let
hO = Zn anr? and d’ = Zn Yn¢n-

e We have hy converges a.s. in 2'(D) since it is GFF on U.

@ Since hy + ¢ = h, converges a.s. in Z'(D), the series defining ¢
converges a.s., hence is a C® harmonic on U.
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Conformal invariance

The Dirichlet inner product is conformally invariant. If o : D — D’ is
conformally invariant then

V(fogp ') -V(gog™) = f Vf-Vg.
D D
Thus if {f,} is an o.n. basis of H}(D) then {f, o ¢~1} is an o.n. basis of

HE(D'). Thus we obtain the following theorem.

Theorem

If h is a random distribution on 9'(D) with the law of the Gaussian free
field on D, then ho ¢~ is a GFF on Z'.
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Circle average

Let D be a bounded domain, let z€ D, and let 0 < € < d(z,0D). Let p,
be uniform measure on the circle of radius ¢ centered at z. Notice that

sz Pz,e(dX)pz,e(dy)G(x,y) < o

since Sé xlogx < o, so that p, . € 4. Set

he(z) = (h, PZ,6)~
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Circle average

Theorem

Let h be a GFF on D. Fix ze€ D and let 0 < eg < d(z,0D). For
t >ty = log(1/eg), set
Bt = he—t(Z).

Then (B, t > tg) has the law of a Brownian motion started from By,.
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Circle average

Proof.

@ Suppose €1 > €, and we condition on h outside B(z,€1). Thus we
can write h = h% + ¢ where ¢ is harmonic on U = B(z,¢1) and A0 is
GFF in U.

® Then h,(z) = h2 (z) + ¥ where ¢ is the circle average of ¢ on the
boundary of B(z,e). By harmonicity of ¢, ¢ = he, (2).

@ Thus

h€2(z) = h61(z> + h(E)Q(Z)

which proves the independence of the increments.

w—z
€1
the outer circle to the unit circle, we see that the increment h22 (z)

e . : : :
depends only on r = 2. This provides the stationarity.

@ By applying the change of scale, w —

, which conformally maps

Ol
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Circle average

Proof.

@ To determine the rate of the Brownian motion, it suffices to check
that the GFF on D satisfies Var h,(0) = —log r for 0 < r < 1.

@ We have
Var(h (0)) = f G (%, y)pr (c) pr (dly).

@ By the mean value property of Gp(x, ), this is

Var(h.(0)) = JD Gp(x,0)pr(dx) = —logr.
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Circle average

Theorem

There exists a modification of h such that

(he(z),ze D,0 < e < d(z,0D)) is jointly Hélder continuous of order
v < % on all compacts of (z€ D,0 < € < d(z,0D)).

Note: A proof is given in Duplantier and Sheffield, 2011.
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Thick points

Definition
Let h be a GFF in D and let « > 0. We say a point z € D is a-thick if

he(2)
" Tog(1/e)
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Thick points

Theorem

Let T, denote the set of a-thick points. Almost surely

2
dim T, — (2— O‘-)
2 +

and T, is empty if a > 2.
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Thick points

Proof sketch.
We sketch only the upper bound. Given € > 0,

Prob(he(z) = alog(1/€)) = Prob(n(O log(1/e) + O(1)) = alog(1/e))

Prob(1(0,1) > a+/log(1/e) + O(1))
a2/2‘

IN

€

In the square D = (0,1)2, the number of sub-squares of side length ¢ with
center z and h.(z) satisfying the bound is, on average, e=2+0%/2 A more
elaborate argument bounds the Minkowski dimension by 2 — %2 a.s. [

v
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Liouville measure

Given € > 0 define pic(dz) := e7h(2)e7*/2dz.

Theorem

Suppose v < 2. Then the random measure . converges almost surely
weakly to a random measure p, the (bulk) Liouville measure, along the
sequence € = 2K 1 has a.s. no atoms, and for any A D open, we have
w(A) >0 a.s. In fact,

E ju(A) = JA R(z, D)"’?dz e (0, ).
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Liouville measure

Lemma
We have Var he(x) = log(1/€) + log R(x, D). In particular,

E pe(A) = L R(z, D)’ dz.
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Liouville measure

Proof.
o Calculate
Var he(x) = T (px,e) = fpxje(dz)pxﬁg(dw)G(z, w)
= Jpx,e(dz)G(z,x).
® G(x,-) = —log|x — | + &(-) where ¢ is the harmonic extension of

—log|x — -| from the boundary. Thus

Var he(x) = G(x) = jG(X,y)pxﬁ(dy) = log(1/e) + &(x).

The conclusion follows since G(x,y) = log(1/|x — y|) + &(x) + o(1)
as y — X.
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Liouville measure

Let S be bounded and open and set /. = p(S). Let e >0and § = 5. We
first consider the easier case v < /2.

Theorem

We have the estimate E((l. — I5)2) < Ce2~7". In particular, I. is a Cauchy
sequence in L?(Prob) and so converges to a limit in probability. Along
e = 27K this convergence occurs a.s.
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Liouville measure

Proof.
o Let he(z) = vhe(z) — (¥2/2) Var(he(z)) and let o(dz) = R(z, D)7*/2.
@ By Fubini

E((—15)?) = L E [ (00 — ) () — eRs) ] o (db)o(dy).
o Write

(eze(x) _ eﬁ;(@) <eﬁe(y) _ ezé(y))
_ he()+he(y) (1 _ eﬂa(x)fﬂé(x)> (1 B ezé(y),ge(y)> ‘

The three terms now are independent of each other by the Markov
property if [x — y| > 2¢. In this case the expectation vanishes.

Bob Hough Math 639: Lecture 24 May 11, 2017 56 / 65




Liouville measure

Proof.
@ When |x — y| < 2,

E((l — 15)?)
< f VJE((Pt) — eh))2) E((eFe) — ehs(9))2)o(dx)or(dly)
x—yl<2e

<C V/E(e2h(0) E(e2R) r () r(dly)

[x—y|<2e

<C €’ e2(20)?108(1/) 5 () (dly)
[x—y|<2e

< Ce2 7,

Ol

v
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Tilting lemma

Lemma

Let X = (Xi,...,Xp) be a Gaussian vector with law Prob, with mean p and
covariance matrix V. Let o € R" and define a new probability measure by

dProb’ X
dProb  E[e(aX)]

Under Prob’, X is a Gaussian vector with covariance matrix VV and mean
n+ Va.
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Tilting lemma

Proof.

It suffices to let u = 0. The Laplace transform is given by

E [e<)\+a,X>]
Eprob’ [e<A’X>] T~ E [eC@X0]
e%<a+)\,V(a+)\)>

— o3V Va)

The term (A, V\) corresponds to a Gaussian of variance V. The linear

term (\, V) indicates the mean is Va. O
v
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Liouville measure

Now consider v € [v/2,2). Let a > 0 be fixed. Define ‘good’ event
G (x) = {he(x) < arlog(1/e)}.

Lemma (Liouville points are no more than ~-thick)

For a > v we have

E(e"™1ga) 2,1 ple)

where the function p may depend on « and for a fixed a > =, p(e) — 0 as
€ — 0 polynomially fast. The same estimate holds if h(x) is replaced by

he/Z(X)'
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Liouville measure

Proof.
@ Note

dProb’( ) — ohe(¥)

d Prob

E [eﬂe<X>1Gg(X)] — Prob'(G&(x)),

@ By the tilting lemma, under Prob’ the process X5 = h.—s(x) has the
same covariance and its mean is y Cov(Xs, X¢).

@ Thus, under Prob’, X, is Brownian motion with drift . It follows that
the probability that X; > «t is exponentially small in t for t large, or
polynomially small in e.

@ Changing € to ¢/2 shifts t by log2. The conclusion is the same.
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Liouville measure

Fix o > v and introduce

Jo = J; eﬁe(x)lge(x)a(dx), 2/2 = J:s eEE/Q(X)].GE(X)O(dX)

with G¢(x) = G*(x). By the previous lemma, E(|l. — J¢|) < p(€)|S| and
E(lle2 — Jé/zl) < p(e)|S| also tends to zero.
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Liouville measure

Lemma

We have E((J. — Jé/z)z) < € for some r > 0. In particular, I is a Cauchy

sequence in L1 and so converges to a limit in probability. Along e = 27K,
this convergence occurs almost surely.
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Liouville measure

Proof.

o Observe that if [x — y| > 2¢ then the increments h(x) — h/»(x) and
he(y) — hejo(y) are independent of each other and also the o-algebra
generated by h outside the balls of radius € about x and y, in
particular of G¢(x) and G(y).

e By Cauchy-Schwarz,
E ((d = 4)?)

<C f \/E(EZE(X)].GE(X)) E(eﬂe()’)lGe(y))a(dx)o(dy).
x—yl<2e
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Liouville measure

Proof.

@ Observe
E(e*®1¢, () < O(1)e "' Qhe(x) < alog 1/e)

e2Fe(X>
E[eZZE(X)] :
@ By the tilting lemma h(x) is a normal random variable with mean
27vlog(1/e) + O(1) and variance log1/e + O(1). Thus

where Q has density

—a)?
Q(he(x) < alogl/e) < O(1) exp (—(272) log 1/6) .

Thus E (4 — J

to v makes this < €" for some r > 0.

)2> < 0(1)62*726%(27_"‘)2. Choosing « suff. close

0

v
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