Math 639: Lecture 22

Concentration of measure

Bob Hough

May 5, 2017

Bob Hough Math 639: Lecture 22

Concentration of measure

This lecture is drawn from:

- M. Ledoux. The concentration of measure phenomenon. AMS 89, 2001.
- M. Ledoux and M. Talagrand. Probability in Banach spaces.
 Springer, 1991.
- N. Alon and J. Spencer. The probabilistic method. Wiley, 2016.

Chernoff's inequality

Theorem

Let $X_1, X_2, ..., X_n$ be jointly independent random variables with mean 0 and such that $|X_i| \le 1$. Let

$$X := X_1 + \cdots + X_n$$

and let $\sigma = \sqrt{\text{Var}[X]}$ the standard deviation. Then for any $\lambda > 0$,

$$Prob(|X| > \lambda \sigma) \le 2 \max(e^{-\lambda^2/4}, e^{-\lambda \sigma/2}).$$

The concentration of measure phenomenon seeks to obtain 'Gaussian-type' tail decay in circumstances with less independence.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Bob Hough Math 639: Lecture 22 May 5, 2017 3 / 61

Chernoff's inequality

Lemma

Let X be a random variable with $|X| \le 1$ and E[X] = 0. Then for any $-1 \le t \le 1$ we have $E[e^{tX}] \le \exp(t^2 \operatorname{Var}[X])$.

Proof.

By Taylor expansion, $e^{tX} \leq 1 + tX + t^2X^2$. Thus

$$\mathsf{E}[e^{tX}] \leqslant 1 + t^2 \mathsf{Var}[X] \leqslant \exp(t^2 \mathsf{Var}[X]).$$

Chernoff's inequality

Proof of Chernoff's inequality.

- By symmetry it suffices to prove $\operatorname{Prob}(X \geqslant \lambda \sigma) \leqslant e^{-t\lambda \sigma/2}$ where $t = \min(\lambda/2\sigma, 1)$.
- Use $\operatorname{Prob}(X \geqslant \lambda) = \operatorname{Prob}(e^{tX} \geqslant e^{t\lambda}) \leqslant \frac{\operatorname{E}[e^{tX}]}{e^{t\lambda}}$.
- Thus

$$\begin{split} \operatorname{\mathsf{Prob}}(X \geqslant \lambda \sigma) \leqslant e^{-t\lambda \sigma} \, \mathsf{E}[e^{tX_1} \cdots e^{tX_n}] \\ &= e^{-t\lambda \sigma} \, \mathsf{E}[e^{tX_1}] \cdots \mathsf{E}[e^{tX_n}] \\ &\leqslant e^{-t\lambda \sigma} \, \mathsf{exp}(t^2(\operatorname{\mathsf{Var}}[X_1] + \cdots + \operatorname{\mathsf{Var}}[X_n])) \\ &= \mathsf{exp}(t^2 \sigma^2 - t\lambda \sigma). \end{split}$$

• The claim follows, since $t \leq \lambda/2\sigma$.

5 / 61

The following is a martingale variant of Chernoff's bound.

Theorem (Azuma's inequality)

Let $0 = X_0, X_1, ..., X_m$ be a martingale sequence, with $\mathscr{F}_i = \sigma(X_0, ..., X_i)$ and $\mathsf{E}[X_i|\mathscr{F}_{i-1}] = X_{i-1}$. Assume

$$|X_i - X_{i-1}| \leqslant 1$$

for all $1 \le i \le m$. Let $\lambda > 0$. Then

$$Prob\left[X_m > \lambda \sqrt{m}\right] < e^{-\lambda^2/2}.$$

◆ロト ◆回ト ◆注ト ◆注ト 注 りくで

Bob Hough Math 639: Lecture 22

Proof.

- Set $\alpha = \lambda/\sqrt{m}$.
- Let $Y_i = X_i X_{i-1}$, so $|Y_i| \le 1$ and $E[Y_i | X_0, ..., X_{i-1}] = 0$.
- By convexity we have

$$\mathsf{E}[e^{\alpha Y_i}|X_0,...,X_{i-1}] \leqslant \mathsf{cosh}(\alpha) \leqslant e^{\alpha^2/2}.$$

Proof.

• Setting apart one variable at a time,

$$\begin{split} \mathsf{E}[e^{\mathsf{a}X_m}] &= \mathsf{E}\left[\prod_{i=1}^m e^{\alpha Y_i}\right] \\ &= \mathsf{E}\left[\left(\prod_{i=1}^{m-1} e^{\alpha Y_i}\right) \mathsf{E}[e^{\alpha Y_m}|X_0,...,X_{m-1}]\right] \\ &\leqslant e^{\alpha^2/2} \, \mathsf{E}\left[\prod_{i=1}^{m-1} e^{\alpha Y_i}\right] \leqslant e^{\alpha^2 m/2}. \end{split}$$

4D > 4A > 4B > 4B > B 990

Bob Hough Math 639: Lecture 22 May 5, 2017 8 / 61

Proof.

Thus

$$\mathsf{Prob}\left(X_m > \lambda \sqrt{m}\right) = \mathsf{Prob}\left(e^{\alpha X_m} > e^{\alpha \lambda \sqrt{m}}\right)$$

$$< \mathsf{E}[e^{\alpha X_m}]e^{-\alpha \lambda \sqrt{m}}$$

$$\leqslant e^{\alpha^2 m/2 - \alpha \lambda \sqrt{m}} = e^{-\lambda^2/2}.$$

Edge exposure martingale

- Let $n \ge 1$ be an integer and 0 . The random graph <math>G(n, p) is a graph on n vertices $\{1, 2, ..., n\}$ with each edge appearing i.i.d. with probability p.
- Let $m = \binom{n}{2}$ and let the potential edges be $e_1, ..., e_m$.
- Let f be a function on graphs, and define a martingale $X_0, X_1, X_2, ...$ by setting X_0 to be the expectation of f(G) when graph G is sampled from G(n, p).
- Let X_i be determined by deciding whether $e_1, ..., e_i$ belongs to G, then taking the expectation of f(G) where the remaining edges are random.

Vertex exposure martingale

- Let f be a function on graphs as before, and let $X_1 = \mathsf{E}[f(G)]$ when G is sampled from G(n,p)
- Define martingale $X_1, ..., X_n$ by letting X_i be the conditional expectation in which all edges between vertices $j, k \leq i$ are deterministic, and all other edges are random.

The chromatic number of a random graph

The chromatic number $\chi(G)$ of a graph G is the least number of colors needed to color the vertices of G so that no edge is monochromatic.

Theorem (Shamir and Spencer, 1987)

Let $n \ge 1$ and $0 . Set <math>c = E[\chi(G)]$ when G is sampled from G(n,p). Then

Prob
$$[|\chi(G) - c| > \lambda \sqrt{n-1}] < 2e^{-\lambda^2/2}$$
.

Bob Hough Math 639: Lecture 22 May 5, 2017

The chromatic number of a random graph

Proof.

- Let $f(G) = \chi(G)$ be the chromatic number, and let $c = X_1, X_2, ..., X_n$ be the corresponding vertex exposure martingale.
- The bounded difference condition applies, since a single vertex can be given a new color.
- Hence the result follows from Azuma's inequality.

Azuma's inequality variant

The following slight generalization of Azuma's inequality is sometimes useful.

Theorem (Azuma's inequality variant)

Let $0 = X_0, X_1, ..., X_m$ be a martingale sequence, with differences $Y_i = X_i - X_{i-1}$. Assume that $\|Y_i\|_{\infty} < \infty$. Let

$$a = \left(\sum_{i=1}^m \|Y_i\|_{\infty}^2\right)^{\frac{1}{2}}.$$

Let $\lambda > 0$. Then

Prob
$$[|X_m| > \lambda] < 2e^{-\lambda^2/(2a^2)}$$
.

The proof is essentially the same.

14 / 61

Khintchine's inequality

Let $\epsilon_1, ..., \epsilon_n$ be i.i.d. Rademacher random variables (± 1 with equal probability) and let $\alpha_1, ..., \alpha_n$ be real constants. By independence,

$$\mathsf{E}\left[\left|\sum_{i=1}^n \epsilon_i \alpha_i\right|^2\right] = \sum_{i=1}^n \alpha_i^2.$$

Khintchine's inequality gives the following approximate orthogonality in L^p .

Theorem (Khintchine's inequality)

For any $0 , there exist positive finite constants <math>A_p$ and B_p depending on p only such that for any finite sequence (α_i) of real numbers,

$$A_p \|\alpha_i\|_2 \leqslant \left(\mathsf{E} \left| \sum_i \epsilon_i \alpha_i \right|^p \right)^{\frac{1}{p}} \leqslant B_p \|\alpha_i\|_2.$$

4 D F 4 D F 4 D F 4 D F

Bob Hough Math 639: Lecture 22

Khintchine's inequality

Proof.

- Rescale so $\sum_{i} \alpha_{i}^{2} = 1$.
- By the variant of Azuma,

$$\mathsf{E} \left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{p} = \int_{0}^{\infty} \mathsf{Prob} \left(\left| \sum_{i} \epsilon_{i} \alpha_{i} \right| > t \right) dt^{p}$$

$$\leq 2 \int_{0}^{\infty} \exp(-t^{2}/2) dt^{p} = B_{p}^{p}.$$

Khintchine's inequality

Proof.

• By Jensen, it suffices to prove the lower bound p < 2

$$1 = \mathsf{E} \left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{2} = \mathsf{E} \left(\left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{2p/3} \left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{2-2p/3} \right)$$

$$\leq \left(\mathsf{E} \left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{p} \right)^{2/3} \left(\mathsf{E} \left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{6-2p} \right)^{1/3}$$

$$\leq \left(\mathsf{E} \left| \sum_{i} \epsilon_{i} \alpha_{i} \right|^{p} \right)^{2/3} B_{6-2p}^{2-2p/3}.$$

Bob Hough Math 639: Lecture 22 May 5, 2017 17 / 61

Definition

Let (X,d) be a finite metric space. We say (X,d) has length at most ℓ if there exists

• an increasing sequence

$$\{X\}=\mathcal{X}^0,\mathcal{X}^1,...,\mathcal{X}^n=\{\{x\}\}_{x\in X}$$

of partitions of X, with \mathscr{X}^i a refinement of \mathscr{X}^{i-1}

• positive numbers $a_1,...,a_n$, with $\ell=\left(\sum_{i=1}^n a_i^2\right)^{\frac{1}{2}}$, such that if

$$\mathscr{X}^i = \{A^i_j\}_{1 \leqslant j \leqslant m}$$

then for all A^i_j, A^i_k contained in some A^{i-1}_p there exists a bijection $\phi: A^i_i \to A^i_k$ such that $d(x, \phi(x)) \leq a_i$ for all $x \in A^i_i$.

The length of a metric space is always at most its diameter

Bob Hough Math 639: Lecture 22 May 5, 2017 18 / 61

Theorem

Let (X,d) be a finite metric space of length at most ℓ , and let μ be the uniform probability measure on X. For every 1-Lipschitz function F on (X,d) and every $r\geqslant 0$,

$$\mu\left(\left\{F\geqslant\int Fd\mu+r
ight\}
ight)\leqslant e^{-r^2/2\ell^2}.$$

19 / 61

Proof.

- Let \mathscr{F}_i be the σ -field generated by \mathscr{X}^i , and set $F_i = \mathsf{E}[F|\mathscr{F}_i]$, which is a martingale sequence with $F_0 = \int F d\mu$.
- Let $B = A_j^i$, $C = A_k^i$ be distinct atoms of \mathscr{F}_i contained in a single atom A_p^{i-1} of \mathscr{F}_{i-1} .
- Thus F_i is constant on B, C, and

$$|F_i|_C = \frac{1}{|C|} \sum_{x \in C} F(x) = \frac{1}{|B|} \sum_{x \in B} F(\phi(x))$$

so that $|F_i|_C - F_i|_B| \le a_i$ by the 1-Lipschitz property.

• The conclusion follows from the variant of Azuma's inequality.

20 / 61

Math 639: Lecture 22 May 5, 2017

• Consider the symmetric group \mathfrak{S}_n on n letters, given the metric, for $\sigma, \pi \in \mathfrak{S}_n$,

$$d(\sigma,\pi) = \frac{1}{n} \# \{i : \sigma(i) \neq \pi(i)\}.$$

• Let \mathcal{X}_i be the partition consisting of sets

$$A_{j_1,...,j_i} = \{ \sigma \in \mathfrak{S}_n : \sigma(1) = j_1,...,\sigma(i) = j_i \}.$$

- If $B, C \in \mathcal{X}_i$ satisfy $B, C \subset A \in \mathcal{X}_{i-1}$ then B and C differ only at place i, given by j_i, j'_i , say.
- Let ϕ be the relabeling that swaps j_i and j_i' in the image of the permutation, so that we may take all $a_i = \frac{2}{n}$ and $\ell = \frac{2}{\sqrt{n}}$. Note that the diameter is 1.

21 / 61

We obtain the following corollary for the symmetric group.

Theorem

Let μ be the uniform probability measure on (\mathfrak{S}_n,d) . For any 1-Lipschitz function F on (\mathscr{F}_n,d) and any $r\geqslant 0$,

$$\mu\left(\left\{F\geqslant\int Fd\mu+r\right\}\right)\leqslant \mathrm{e}^{-nr^2/8}.$$

22 / 61

Example

Let $F(\sigma)$ be the number of transpositions (i,j) required to reach permutation σ from the identity. F is n-Lipschitz, as may be seen by moving one coordinate into correct position at a time. Hence

$$\mu\left(\left\{F\geqslant\int Fd\mu+r\right\}\right)\leqslant e^{-r^2/8n}$$

so F is concentrated at a scale of \sqrt{n} about its mean.

23 / 61

- Consider (finite) probability spaces $(\Omega_i, \Sigma_i, \mu_i)_{i=1}^n$ with product measure $P = \mu_1 \otimes \cdots \otimes \mu_n$ on $X = \Omega_1 \times \cdots \times \Omega_n$.
- Consider weighted Hamming metrics. Let $a=(a_1,...,a_n)\in\mathbb{R}^n_+$,

$$|a|^2 = \sum_{i=1}^n a_i^2$$

and

$$d_a(x,y) = \sum_{i=1}^n a_i \mathbf{1}(x_i \neq y_i).$$

• Given a non-empty set $A \subset X$ and $x \in X$ define a distance

$$D_A(x) = \sup_{|a|=1} d_a(x, A).$$

Let

$$U_A(x) = \{s = (s_i)_{1 \le i \le n} \in \{0, 1\}^n : \exists y \in A, y_i = x_i \text{ if } s_i = 0\}.$$

• Let $V_A(x)$ be the convex hull in $[0,1]^n$ of $U_A(x)$. Note that $0 \in V_A(x)$ if and only if $x \in A$.

Bob Hough

Lemma

We have

$$D_A(x) = d(0, V_A(x)) = \inf_{y \in V_A(x)} |y|.$$

Proof.

• If $d(0, V_A(x)) \leqslant r$, there exists $z \in V_A(x)$ with $|z| \leqslant r$. Let $a \in \mathbb{R}^n_+$ with |a| = 1. Then

$$\inf_{y\in V_A(x)}a\cdot y\leqslant a\cdot z\leqslant |z|\leqslant r.$$

Since

$$\inf_{y \in V_A(x)} a \cdot y = \inf_{s \in U_A(x)} a \cdot s = d_a(x, A)$$

this proves $D_A(x) \leq r$.

Bob Hough Math 639: Lecture 22 May 5, 2017 27 / 61

Proof.

- To prove the reverse direction, let $z \in V_A(x)$ such that $|z| = d(0, V_A(x)) > 0$ and let $a = \frac{z}{|z|}$.
- Let $y \in V_A(x)$. Then for $\theta \in [0,1]$, $\theta y + (1-\theta)z \in V_A(x)$ so

$$|z + \theta(y - z)|^2 = |\theta y + (1 - \theta)z|^2 \ge |z|^2.$$

• Letting $\theta \to 0$, $(y - z) \cdot z \ge 0$, so

$$a \cdot y \geqslant |z| = d(0, V_A(x)).$$

Hence

$$D_A(x) \geqslant d_a(x, A) = \inf_{y \in V_A(x)} a \cdot y \geqslant d(0, V_A(x)).$$

Bob Hough Math 639: Lecture 22

Theorem (Talagrand's inequality)

For every measurable non-empty subset A of $X = \Omega^1 \times \cdots \times \Omega^n$, and every product probability P on X,

$$\int e^{D_A^2/4}dP\leqslant \frac{1}{P(A)}.$$

In particular, for every $r \geqslant 0$,

$$P(\{D_A \geqslant r\}) \leqslant \frac{e^{-r^2/4}}{P(A)}.$$

Bob Hough Math 639: Lecture 22

Proof.

- Without loss of generality, let (Ω, Σ, μ) be a prob. space and let $P = \mu^n$ be the *n*-fold product on $X = \Omega^n$.
- The proof is by induction. The case n = 1 amounts to the inequality

$$P(A)(1-P(A)) \leqslant \frac{1}{4} < e^{-1/4}.$$

- To make the inductive step, let $A \in \Omega^{n+1}$ and let B be the projection to Ω^n , forgetting the last coordinate.
- For $\omega \in \Omega$ let $A(\omega)$ be the section of A along ω

Proof.

- Given $x \in \Omega^n$ and $\omega \in \Omega$, write $z = (x, \omega)$.
- If $s \in U_{A(\omega)}$ then $(s,0) \in U_A(z)$. If $t \in U_B(x)$ then $(t,1) \in U_A(z)$.
- Hence if $\xi \in V_{A(\omega)}(x)$ and $\zeta \in V_B(x)$ and $0 \le \theta \le 1$ then $(\theta \xi + (1 \theta)\zeta, 1 \theta) \in V_A(z)$.
- By convexity,

$$D_{A}(z)^{2} \leq (1-\theta)^{2} + |\theta\xi + (1-\theta)\zeta|^{2}$$

$$\leq (1-\theta)^{2} + \theta|\xi|^{2} + (1-\theta)|\zeta|^{2}.$$

SO

$$D_A(z)^2 \le (1-\theta)^2 + \theta D_{A(\omega)}(x)^2 + (1-\theta)D_B(x)^2.$$

Proof.

By Hölder's inequality and the induction hypothesis, for fixed $\omega \in \Omega$,

$$\begin{split} \int_{\Omega^n} e^{D_A(x,\omega)^2/4} dP(x) & \leq e^{\frac{(1-\theta)^2}{4}} \left(\int_{\Omega^n} e^{D_{A(\omega)}^2/4} dP \right)^{\theta} \left(\int_{\Omega^n} e^{D_B^2/4} dP \right)^{1-\theta} \\ & \leq e^{\frac{(1-\theta)^2}{4}} \left(\frac{1}{P(A(\omega))} \right)^{\theta} \left(\frac{1}{P(B)} \right)^{1-\theta} \\ & = \frac{1}{P(B)} e^{\frac{(1-\theta)^2}{4}} \left(\frac{P(A(\omega))}{P(B)} \right)^{-\theta} . \end{split}$$

• Use $\inf_{\theta \in [0,1]} e^{\frac{(1-\theta)^2}{4}} u^{-\theta} \leqslant 2 - u$, so

$$\int_{\Omega^n} e^{D_A(x,\omega)^2/4} dP(x) \leqslant \frac{1}{P(B)} \left(2 - \frac{P(A(\omega))}{P(B)} \right).$$

Proof.

• Use $u(2-u) \leqslant 1$ and integrate in ω to find

$$\int_{\Omega^{n+1}} e^{D_A(x,\omega)^2/4} dP(x) d\mu(\omega) \leqslant \frac{1}{P(B)} \left(2 - \frac{P \otimes \mu(A)}{P(B)} \right)$$

$$\leqslant \frac{1}{P \otimes \mu(A)}.$$

Longest increasing subsequence

- Consider points $x_1, ..., x_n \in [0, 1]$.
- Denote by $L_n(x_1,...,x_n)=L_n(x)$ the length of the longest increasing subsequence, that is, the largest p so that there exist $i_1 < i_2 < ... < i_p$ with

$$x_{i_1} < x_{i_2} < \cdots < x_{i_p}.$$

• When $U_1, ..., U_n$ are i.i.d. uniform on [0,1], $L_n(U_1, ..., U_n)$ has the same distribution as the longest increasing sequence in a random permutation.

Longest increasing subsequence

Lemma

Given $s \ge 0$, let $A = A_s = \{x \in [0,1]^n : L_n(x) \le s\}$. We have

$$s \geqslant L_n(x) - D_A(x)\sqrt{L_n(x)}.$$

In particular,

$$D_A(x) \geqslant \frac{u}{\sqrt{s+u}}$$

whenever $L_n(x) \geqslant s + u$.

Bob Hough Math 639: Lecture 22

Longest increasing subsequence

Proof.

- Let $I \subset \{1, 2, ..., n\}$ with $|I| = L_n(x)$ such that if $i, j \in I$ with i < j then $x_i < x_j$.
- Choose a supported on I with value $a|_I \equiv \frac{1}{\sqrt{L_n(x)}}$ to find that there exists $y \in A$ such that $J = \{i \in I : y_i \neq x_i\}$ satisfies

$$|J| \leq D_A \sqrt{L_n(x)}.$$

- It follows that $(x_i)_{i \in I \setminus J}$ is an increasing subsequence of y, which proves the first part of the lemma.
- The second part of the lemma follows from $D_A \geqslant \frac{L_n(x)-s}{\sqrt{L_n(x)}}$ since $u \mapsto \frac{u-s}{\sqrt{u}}$ is increasing in $u \geqslant s$.

36 / 61

Math 639: Lecture 22 May 5, 2017

Longest increasing subsequence

Theorem

Let m_n be a median of $L_n = L_n(U_1,...,U_n)$, so $P(L_n > m_n) \le 1/2$ and $P(L_n < m_n) \le 1/2$. For every $r \ge 0$,

$$P(\{L_n \geqslant m_n + r\}) \leqslant 2e^{-r^2/4(m_n + r)}$$

 $P(\{L_n \leqslant m_n - r\}) \leqslant 2e^{-r^2/4m_n}$

so, in particular, for $0 \leqslant r \leqslant m_n$,

$$P(\{|L_n - m_n| \geqslant r\}) \leqslant 4e^{-r^2/8m_n}.$$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Bob Hough Mat

Longest increasing subsequence

Proof.

- Let $A = \{x : L_n(x) \le m_n\}$ and let $B = \{x : L_n(x) \ge m_n + r\}$.
- By Talagrand's inequality,

$$\int_B e^{D_A^2/4} \leqslant \frac{1}{P(A)} \leqslant 2.$$

- $D_A \geqslant \frac{r}{\sqrt{m_n+r}}$ on B, the first bound follows.
- Now let $A = \{x : L_n(x) \leqslant m_n r\}$ and $B = \{x : L_n(x) \geqslant m_n\}$ so that $D_A(x) \geqslant \frac{r}{\sqrt{m_n}}$ on B, so

$$\frac{1}{2} \leqslant P(B) \leqslant \frac{e^{-r^2/4m_n}}{P(A)}.$$

Bob Hough Math 639: Lecture 22 May 5, 2017 38 / 61

Lipschitz functions

Definition

Let $X = \Omega_1 \times \cdots \times \Omega_n$. We say that a function $F : X \to \mathbb{R}$ is 1-Lipschitz in the sense of Talagrand, if for every $x \in X$ there exists a = a(x) such that, for every $y \in X$,

$$F(x) \leqslant F(y) + d_a(x, y)$$
.

39 / 61

Talagrand's inequality for Lipschitz functions

Theorem

Let P be a product probability measure on the space $X=\Omega_1\times\cdots\times\Omega_n$, and let $F:X\to\mathbb{R}$ be 1-Lipschitz in the sense of Talagrand. Let m_F be a median for F, so that $P(F\geqslant m_F), P(F\leqslant m_F)\geqslant \frac{1}{2}$. Then, for every $r\geqslant 0$,

$$P(\{|F - m_F| \ge r\}) \le 4e^{-r^2/4}.$$

Talagrand's inequality for Lipschitz functions

Proof.

- Let $A = \{F \leq m_F\}$.
- By the 1-Lipschitz property, for each x there exists a=a(x) such that

$$F(x) \leqslant m_F + d_a(x, A) \leqslant m_F + D_A(x).$$

Hence, by Talagrand's inequality,

$$P(\{F \geqslant m_F + r\}) \leqslant P(\{D_A \geqslant r\}) \leqslant \frac{e^{-r^2/4}}{P(A)} \leqslant 2e^{-r^2/4}.$$

• To bound the lower tail, argue similarly, replacing m_F with $m_F - r$.

Suprema of linear functionals

- ullet Let $Y_1,...,Y_n$ be independent random variables taking values in [0,1]
- Let

$$Z = \sup_{t \in \mathscr{T}} \sum_{i=1}^{n} t_i Y_i$$

where \mathscr{T} is a finite family of vectors $t = (t_1, ..., t_n) \in \mathbb{R}^n$.

• Let $\sigma = \sup_{t \in \mathscr{T}} |t|_2$.

Suprema of linear functionals

- Let $X = [0,1]^n$ with P the product measure of the laws of the Y_i , and, for $x \in X$, $F(x) = \sup_{t \in \mathcal{T}} \sum_{i=1}^n t_i x_i$.
- Given $x = (x_1, ..., x_n) \in X$, let t = t(x) achieve the supremum of F(x). Then, for all $y \in X$,

$$F(x) = \sum_{i=1}^{n} t_i x_i \leqslant \sum_{i=1}^{n} t_i y_i + \sum_{i=1}^{n} |t_i| |x_i - y_i|$$

$$\leqslant F(y) + \sigma \sum_{i=1}^{n} \frac{|t_i|}{\sigma} \mathbf{1}(x_i \neq y_i).$$

It follows that $\sigma^{-1}F$ is 1-Lipschitz in the sense of Talagrand, by choosing $a = a(x) = \sigma^{-1}(|t_1|,...,|t_n|)$.

◆ロ > ◆回 > ◆ き > ◆き > き の < ○</p>

Suprema of linear functionals

We obtain the following corollary.

Corollary

Let $\{Y_i\}_{i=1}^n$ be independent random variables taking values in [0,1], let \mathscr{T} be a finite family of linear functionals on \mathbb{R}^n bounded in ℓ^2 by σ , and let

$$Z = \sup_{t \in \mathscr{T}} \sum_{i=1}^n t_i Y_i.$$

Let m_Z be a median of Z. Then, for every $r \ge 0$,

$$P(\{|Z - m_Z| \ge r\}) \le 4e^{-r^2/4\sigma^2}.$$

4□ > 4□ > 4 = > 4 = > = 90

Bob Hough

First passage percolation

Theorem

Bob Hough

Let G = (V, E) be a graph. Let $(Y_e)_{e \in E}$ be i.i.d. random variables (passage times) taking values in [0,1]. Let $\mathscr T$ be a set of subsets of E. Given $T \in \mathscr T$, let $Y_T = \sum_{e \in T} Y_e$. Define

$$Z_{\mathscr{T}} = \inf_{T \in \mathscr{T}} Y_T = \inf_{T \in \mathscr{T}} \sum_{e \in T} Y_e.$$

Let $D = \sup_{T \in \mathscr{T}} |T|$ and let m be a median of $Z_{\mathscr{T}}$. Then, for each r > 0,

$$P(\{|Z_{\mathscr{T}}-m|\geqslant r\})\leqslant 4e^{-r^2/4D}.$$

The set \mathscr{T} could be taken to be a collection of paths connecting a pair of vertices x, y. $Z_{\mathscr{T}}$ is then the lowest cost path among these.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

45 / 61

Math 639: Lecture 22 May 5, 2017

Further applications

Talagrand's method may also be used to prove concentration for the traveling salesman problem, and minimum length spanning tree for random collections of points in $[0,1]^2$.

Definition

Denote $\gamma_N(dx) = (2\pi)^{-N/2} \exp(-|x|^2/2) dx$ the Gaussian measure on \mathbb{R}^N . Define the usual Lipschitz norm of a real function f on \mathbb{R}^N .

$$||f||_{\text{Lip}} = \sup \left\{ \frac{|f(x) - f(y)|}{|x - y|} : x, y \in \mathbb{R}^N \right\}.$$

We say a function is Lipschitz if it has finite Lipschitz norm.

47 / 61

Theorem

Given Lipschitz function f, let

$$E_f = \int_{\mathbb{R}^N} f(x) d\gamma_N.$$

For any $t \ge 0$,

$$\gamma_N(|f - E_f| > t) \le 2 \exp(-2t^2/\pi^2 ||f||_{\text{Lip}}^2).$$

With more care, the constant $\frac{2}{\pi^2}$ can be replaced with $\frac{1}{2}$ in the exponential.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 める◆

48 / 61

Proof.

- Let f Lipschitz on \mathbb{R}^N , so f is a.e. differentiable and satisfies $|\nabla f| \leq ||f||_{\text{Lip}}$.
- Shifting by a constant, assume $\int f d\gamma_N = 0$.
- By convexity

$$\begin{split} \gamma_N(f>t) &\leqslant \exp(-\lambda t) \int \exp(\lambda f) d\gamma_N \\ &\leqslant \exp(-\lambda t) \int \int \exp[\lambda (f(x)-f(y))] d\gamma_N(x) d\gamma_N(y). \end{split}$$

Proof.

• Given $x, y \in \mathbb{R}^n$, let

$$x(\theta) = x \sin \theta + y \cos \theta,$$
 $x'(\theta) = x \cos \theta - y \sin \theta$

so that

$$f(x) - f(y) = \int_0^{\pi/2} \frac{d}{d\theta} f(x(\theta)) d\theta = \int_0^{\pi/2} \langle \nabla f(x(\theta)), x'(\theta) \rangle d\theta.$$

• By Jensen, $\gamma_N(f > t)$ is bounded by

$$\exp(-\lambda t) \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \iint \exp\left[\frac{\lambda \pi}{2} \langle \nabla f(x(\theta)), x'(\theta) \rangle\right] d\gamma_{N}(x) d\gamma_{N}(y) d\theta$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶

Bob Hough Math 639: Lecture 22 May 5, 2017 50 / 61

Proof.

• For fixed θ , the distribution of $(x(\theta), x'(\theta))$ is the same as the distribution of x, y. Hence

$$\begin{split} \gamma_{N}(f > t) & \leq \exp(-\lambda t) \iint \exp\left[\frac{\lambda \pi}{2} \langle \nabla f(x), y \rangle\right] d\gamma_{N}(x) d\gamma_{N}(y) \\ & \leq \exp(-\lambda t) \int \exp\left(\frac{\lambda^{2} \pi^{2}}{8} |\nabla f|^{2}\right) d\gamma_{n} \\ & \leq \exp\left(-\lambda t + \frac{\lambda^{2} \pi^{2}}{8} \|f\|_{\text{Lip}}^{2}\right). \end{split}$$

• Choose $\lambda = \frac{4t}{\pi^2 \|f\|_{L_{\infty}}^2}$ to obtain

$$\gamma_{N}(f > t) \leq \exp(-2t^{2}/\pi^{2}||f||_{\text{Lip}}^{2}).$$

Definition

Given a probability space (Ω, Σ, μ) and a non-negative measurable f, define it's entropy

$$\mathsf{Ent}_{\mu}(f) = \int f \log f d\mu - \int f d\mu \log \int f d\mu$$

where $\int f(\log 1 + f) d\mu < \infty$ and ∞ otherwise.

This is homogeneous of degree 1.

Bob Hough Math 639: Lecture 22 May 5, 2017 52 / 61

Definition

We say a Borel probability measure μ on \mathbb{R}^n satisfies a *logarithmic Sobolev* inequality with constant C>0 if, for all smooth enough functions f,

$$\operatorname{Ent}_{\mu}(f^2) \leqslant 2C \int |\nabla f|^2 d\mu.$$

53 / 61

Abbreviate γ the Gaussian measure on \mathbb{R}^n .

Theorem

For every smooth enough function f on \mathbb{R}^n ,

$$\operatorname{Ent}_{\gamma}(f^2) \leqslant 2 \int |\nabla f|^2 d\gamma.$$

Proof.

• Let $(P_t)_{t\geqslant 0}$ denote the Ornstein-Uhlenbeck semigroup, which has integral representation

$$P_t f(x) = \int f(e^{-t}x + (1 - e^{-2t})y) d\gamma(y), \qquad t \geqslant 0, x \in \mathbb{R}^n.$$

- Let f be smooth and non-negative, satisfying $\epsilon \leqslant f \leqslant 1/\epsilon$.
- Since $P_0f = f$ and $\lim_{t\to\infty} P_tf = \int f d\gamma$,

$$\operatorname{Ent}_{\gamma}(f) = -\int_{0}^{\infty} \frac{d}{dt} \left(\int P_{t} f \log P_{t} f d\gamma \right) dt$$

55 / 61

Proof.

• We have $P_t = e^{tL}$ where $L = \Delta - x \cdot \nabla$. The second order differential operator L satisfies, for smooth f, g,

$$\int f(Lg)d\gamma = -\int \nabla f \cdot \nabla g d\gamma.$$

Hence

$$\frac{d}{dt} \int P_t f \log P_t f d\gamma = \int L P_t f \log P_t f d\gamma + \int L P_t f d\gamma$$
$$= -\int \frac{|\nabla P_t f|^2}{P_t f} d\gamma.$$

Bob Hough

Proof.

Calculate, from the integral representation,

$$\nabla P_t f = e^{-t} P_t (\nabla f) \implies |\nabla P_t f| \leqslant e^{-t} P_t (|\nabla f|).$$

By Cauchy-Schwarz,

$$P_t(|\nabla f|)^2 \leqslant P_t(f)P_t\left(\frac{|\nabla f|^2}{f}\right).$$

Combining these steps,

$$\operatorname{Ent}_{\gamma}(f) \leqslant \int_{0}^{\infty} \mathrm{e}^{-2t} \left(\int P_{t} \left(\frac{|\nabla f|^{2}}{f} \right) d\gamma \right) dt = \frac{1}{2} \int \frac{|\nabla f|^{2}}{f} d\gamma.$$

The conclusion follows on replacing f with f^2 and letting $\epsilon \downarrow 0$.

We can now use the Log Sobolev inequality satisfied by Gaussian measure to obtain the sharper constant in Gaussian concentration.

Theorem

Let F be a 1-Lipschitz function on \mathbb{R}^n . Then

$$\gamma\left(\left\{F\geqslant\int Fd\gamma+r
ight\}
ight)\leqslant e^{-r^2/2}.$$

Bob Hough Math 639: Lecture 22 May 5, 2017 58 / 61

The following argument is due to Herbst.

Proof.

- Let F be a 1-Lipschitz function, satisfying $|\nabla F| \leq ||F||_{Lip} = 1$ a.e.
- Assume, as we may, that $\int F d\gamma = 0$.
- Consider $f^2 = e^{\lambda F \lambda^2/2}$. We have

$$\int |\nabla f|^2 d\gamma = \frac{\lambda^2}{4} \int |\nabla F|^2 e^{\lambda F - \lambda^2/2} d\gamma \leqslant \frac{\lambda^2}{4} \int e^{\lambda F - \lambda^2/2} d\gamma.$$

Proof.

• Let $\Lambda(\lambda) = \int e^{\lambda F - \lambda^2/2} d\gamma$. By log-Sob,

$$\int \left[\lambda F - \frac{\lambda^2}{2}\right] e^{\lambda F - \lambda^2/2} d\gamma - \Lambda(\lambda) \log \Lambda(\lambda) \leqslant \frac{1}{2} \lambda^2 \Lambda(\lambda).$$

which rearranges to

$$\lambda \Lambda'(\lambda) \leqslant \Lambda(\lambda) \log \Lambda(\lambda) \iff \lambda \frac{\Lambda'(\lambda)}{\Lambda(\lambda)} \leqslant \log \Lambda(\lambda).$$

• It follows that $H(\lambda) = \frac{\log \Lambda(\lambda)}{\lambda}$ if $\lambda > 0$, $H(0) = \frac{\Lambda'(0)}{\Lambda(0)} = \int F d\gamma = 0$ satisfies $H'(\lambda) \leq 0$. Hence $\Lambda(\lambda) \leq 1$.

60 / 61

Math 639: Lecture 22 May 5, 2017

Proof.

• We've checked, for all λ ,

$$\int e^{\lambda F} d\gamma \leqslant e^{\frac{\lambda^2}{2}}$$

• Hence $P(F \ge r) \le e^{-\lambda r + \lambda^2/2}$. Choosing $\lambda = r$ proves the claim.

