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Concentration of measure

This lecture is drawn from:

@ M. Ledoux. The concentration of measure phenomenon. AMS 89,
2001.

@ M. Ledoux and M. Talagrand. Probability in Banach spaces.
Springer, 1991.

@ N. Alon and J. Spencer. The probabilistic method. Wiley, 2016.
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Chernoff’s inequality

Theorem

Let Xy, Xo, ..., X, be jointly independent random variables with mean 0
and such that |X;| < 1. Let

X=X+ +Xn

and let o = \/Var[X] the standard deviation. Then for any A > 0,

Prob(|X| > A\o) <2 max(e*)‘z/“7 e*)\U/2).

v

The concentration of measure phenomenon seeks to obtain ‘Gaussian-type’
tail decay in circumstances with less independence.
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Chernoff’s inequality

Lemma

Let X be a random variable with |X| < 1 and E[X] = 0. Then for any
—1 <t <1 we have E[e™] < exp(t? Var[X]).

Proof.
By Taylor expansion, eX <1+ tX + t>X2. Thus

E[e] < 1 + t2Var[X] < exp(t? Var[X]).
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Chernoff’s inequality

Proof of Chernoff’s inequality.

@ By symmetry it suffices to prove Prob(X > A\o) < e~ t7/2 \where
t = min(\/20,1).

o Use Prob(X = \) = Prob(e?X > et)

@ Thus

IN

N

e P E[etXi ... oXn]
_ e—t)\cr E[etxl] . E[etx"]

< e P exp(t?(Var[Xq] + - - - + Var[X,]))
= exp(t?0? — tAo).

Prob(X = A\o)

@ The claim follows, since t < \/20.
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Azuma'’s inequality

The following is a martingale variant of Chernoff's bound.
Theorem (Azuma's inequality)

Let 0 = Xp, X1, ..., Xm be a martingale sequence, with .%; = o(Xo, ..., Xi)
and E[X;|.Zi_1] = Xi—1. Assume

|Xi — Xi—1] <1

forall1<i<m. Let A\ >0. Then

Prob [Xm > Av/m] < e /2,
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Azuma'’s inequality

Proof.

@ Set a = \/y/m.
@ Let Y;=X; — X;_1, so |Y,| <1 and E[Y,'|X0, ...,X,'_l] =0.

@ By convexity we have

E[e®Y/| Xy, ..., Xi_1] < cosh(a) < e,
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Azuma'’s inequality

Proof.

@ Setting apart one variable at a time,

Math 639: Lecture 22

Bob Hough

May 5, 2017

8/ 61



Azuma'’s inequality

Proof.
@ Thus

Prob (X > Av/m) = Prob (2% > e®3vm)
< E[eO‘Xm]e_o"\‘/E

2.9 32
geam/2 O‘)‘\/Eze )\/2'
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Edge exposure martingale

@ Let n > 1 be an integer and 0 < p < 1. The random graph G(n, p) is
a graph on n vertices {1,2, ..., n} with each edge appearing i.i.d. with
probability p.

o Let m= (’27) and let the potential edges be e, ..., em.

@ Let f be a function on graphs, and define a martingale Xp, X1, Xo, ...
by setting Xp to be the expectation of f(G) when graph G is sampled
from G(n, p).

@ Let X; be determined by deciding whether ey, ..., ¢; belongs to G,
then taking the expectation of f(G) where the remaining edges are
random.
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Vertex exposure martingale

@ Let f be a function on graphs as before, and let X; = E[f(G)] when
G is sampled from G(n, p)

@ Define martingale Xi, ..., X,, by letting X; be the conditional
expectation in which all edges between vertices j, k < i are
deterministic, and all other edges are random.
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The chromatic number of a random graph

The chromatic number x(G) of a graph G is the least number of colors
needed to color the vertices of G so that no edge is monochromatic.

Theorem (Shamir and Spencer, 1987)

Let n>1and0 < p<1. Set c = E[x(G)] when G is sampled from
G(n,p). Then

Prob [|x(G) — ¢| > \Wn—1] < 2e™/2.
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The chromatic number of a random graph

Proof.
o Let f(G) = x(G) be the chromatic number, and let ¢ = X1, X, ..., X
be the corresponding vertex exposure martingale.
@ The bounded difference condition applies, since a single vertex can be
given a new color.
@ Hence the result follows from Azuma's inequality.
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Azuma'’s inequality variant

The following slight generalization of Azuma's inequality is sometimes
useful.

Theorem (Azuma's inequality variant)

Let 0 = Xo, X1, ..., Xm be a martingale sequence, with differences
Y; = Xj — Xj_1. Assume that ||Y;|, < o0. Let

1
m 2

a= (Z |Yf|§o> :
i=1

Prob [|Xm| > A] < 2e72/(2#%)

Let A\ > 0. Then

The proof is essentially the same.
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Khintchine's inequality

Let €1, ..., €y be i.i.d. Rademacher random variables (£1 with equal
probability) and let ag, ..., &, be real constants. By independence,

n

2, €0

i=1

E

2 n
-l
i=1

Khintchine's inequality gives the following approximate orthogonality in LP.

Theorem (Khintchine's inequality)

For any 0 < p < 0, there exist positive finite constants A, and B,
depending on p only such that for any finite sequence («;) of real numbers,

P\ 5
> < Bpfail2-
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Khintchine's inequality

Proof.

o Rescale so Y, a? = 1.

@ By the variant of Azuma,

2 cie

i

p
E

2 ci

i

o0
=J’ Prob >t | dtP
0

Q0
< ZJ exp(—t2/2)dtP = Bp.
0
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Khintchine's inequality

Proof.

@ By Jensen, it suffices to prove the lower bound p < 2

2

1=E =E

2 cici

i

< (E Z € Qi

i

2 cici

i

< (E Z € Qi

i

2p/3 2—2p/3

2, i

i

P\ 2/3
) g

P\ 2/3
2-2p/3
> Be 52",

6—2p 1/3

2 cici

i
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Metric examples

Definition

Let (X, d) be a finite metric space. We say (X, d) has length at most ¢ if
there exists

@ an increasing sequence

(X} =29 2% ., 2" = {{x}}xex

of partitions of X, with 27 a refinement of 2711

1
@ positive numbers ay, ..., a,, with £ = (27:1 a,?)Q, such that if

2" = {A}1<j<m

then for all AJ’:,A}'( contained in some A;,_l there exists a bijection
o AJ’: — A} such that d(x, ¢(x)) < a; for all x € Aj’

The length of a metric space is always at most its diameter.
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Metric examples

Theorem

Let (X, d) be a finite metric space of length at most ¢, and let ;1 be the
uniform probability measure on X. For every 1-Lipschitz function F on
(X,d) and every r =0,

i ({F > Jqu + r}) < e 2
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Metric examples

Proof.

o Let .Z; be the o-field generated by 27/, and set F; = E[F|.%;], which
is a martingale sequence with Fo = { Fdp.

o Let B= AJ’ C = A’ be distinct atoms of .%; contained in a single
atom AL_l of Fi_1.

@ Thus F; is constant on B, C, and

Filc = ]C|Z:CF ‘ZBFW’(X))

so that |Fi|¢c — Fi|g| < a; by the 1-Lipschitz property.
@ The conclusion follows from the variant of Azuma's inequality.
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Metric examples

o Consider the symmetric group &, on n letters, given the metric, for
o,me Gy,

1, .. . .
d(o,m) = E#{I co (i) # m(i)}.
o Let Z; be the partition consisting of sets
Aj17""ji = {U € 6"' : 0(1) :j17 7U(I) :.ji}'
o If B,Ce Z; satisfy B,C c Ae Z;_1 then B and C differ only at
place i, given by ji, /!, say.
o Let ¢ be the relabeling that swaps ji and j/ in the image of the

permutation, so that we may take all a; = % and ¢ = % Note that
the diameter is 1.
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Metric examples

We obtain the following corollary for the symmetric group.
Theorem

Let o be the uniform probability measure on (S, d). For any 1-Lipschitz
function F on (%,,d) and any r > 0,

1 ({F > deu—i— r}) <e /8,
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Metric examples

Example

Let F(o) be the number of transpositions (i, /) required to reach
permutation o from the identity. F is n-Lipschitz, as may be seen by
moving one coordinate into correct position at a time. Hence

1 ({F = deu + r}) < e r/8n

so F is concentrated at a scale of y/n about its mean.
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Talagrand'’s inequality

o Consider (finite) probability spaces (€, X;, iti)"_; with product
measure P =1 ® - - @ upon X = Q1 x -+ x Q.
o Consider weighted Hamming metrics. Let a = (a1, ...,a,) € RY,

|a|? = Z a;
and

= Zn: ail(xi # yi).
i-1
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Talagrand'’s inequality

@ Given a non-empty set A < X and x € X define a distance

Da(x) = sup da(x, A).
la|=1

o Let
UA(X) = {S = (Si)léién € {0, 1}” : Ely € A,y,- = Xj if S = 0}

o Let Va(x) be the convex hull in [0,1]" of Ua(x). Note that
0 € Va(x) if and only if x € A.
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Talagrand'’s inequality

Lemma
We have
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Talagrand'’s inequality

Proof.

o If d(0, Va(x)) < r, there exists z € Va(x) with |z| < r. Let ae R/
with |a| = 1. Then

inff a-y<a-z<|z|<r.
yeVa(x)

@ Since

inf a-y= inf a-s=d,(x,A
yevato * YT selato e

this proves Da(x) < r.
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Talagrand'’s inequality

Proof.

@ To prove the reverse direction, let z € Va(x) such that
|z| = d(0, Va(x)) > 0 and let a = B

o Let y € Va(x). Then for 6 € [0,1], Oy + (1 — )z € Va(x) so
lz+6(y —2)> =0y + (1 —0)z]* > |z
o Letting -0, (y —2z)-z>0, so
a-y = |z[ =d(0, Va(x)).
@ Hence

Da(x) = da(x,A) = inf a-y=>d(0, Va(x)).
yeVa(x)
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Talagrand'’s inequality

Theorem (Talagrand’s inequality)

For every measurable non-empty subset A of X = Q! x --

- x Q" and
every product probability P on X,

J eDf\/‘ldP < 1

P(A)

In particular, for every r = 0,
e=r/4
P({Da > r}) < P(A)
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Talagrand'’s inequality

Proof.

e Without loss of generality, let (2, X, 1) be a prob. space and let
P = u" be the n-fold product on X = Q".

@ The proof is by induction. The case n = 1 amounts to the inequality
1
PA1-P(A) < < e 4,

o To make the inductive step, let A€ Q" and let B be the projection
to Q7, forgetting the last coordinate.

@ For w e Q let A(w) be the section of A along w
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Talagrand'’s inequality

Proof.
e Given x € Q" and w € Q, write z = (x,w).
o If s € Upw) then (s,0) € Ua(2). If t € Ug(x) then (t,1) € Ua(2).

@ Hence if £ € V() (x) and ( € Vg(x) and 0 < 6 < 1 then
0+ (1—06)(,1—0) € Va(z).

@ By convexity,
Da(2)* < (1 —0)* + |6€ + (1 - 6)¢|?
<1 =02 +01Ef + (1-0)¢|*

SO
Da(2)? < (1= 0)% + 0Dag (x)? + (1 — 6) Dg(x)*.
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Talagrand'’s inequality

Proof.
e By Holder's inequality and the induction hypothesis, for fixed w € €,

2 (1-0)? D2 /4 0 2 1-0
f LA Adp(x) < e 7 - U ePa/ dP) (J eDB/4dP)

< <P<A1<w>>>6 (P<18>>1_6

: a0 _,
o Useinfgepije % v’ <2—u,so0

f n eDAC@/A gp () < 1 (2 B P(A(w))) |

4
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Talagrand'’s inequality

Proof.

@ Use u(2 — u) <1 and integrate in w to find

f LA /4GP (x) dpu(w) < L (2 _ P®—M(A))
Qn+1
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Longest increasing subsequence

e Consider points xi, ..., x, € [0, 1].

@ Denote by L,(x1,...,xn) = Lp(x) the length of the longest increasing
subsequence, that is, the largest p so that there exist
1 < i <..<ipwith

X,'1<X,'2<'~~<X,'p.

e When Uy, ..., U, are i.i.d. uniform on [0,1], L,(Us, ..., U,) has the
same distribution as the longest increasing sequence in a random
permutation.
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Longest increasing subsequence

Lemma
Givens =20, let A= As = {x € [0,1]": L,(x) < s}. We have

s = Ly(x) — Da(x)\/ Ln(x).

In particular,

whenever L,(x) = s + u.
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Longest increasing subsequence

Proof.
o Let I = {1,2,...,n} with |/| = Ly(x) such that if i,j € | with i <j
then x; < x;.
@ Choose a supported on / with value a|; = Ll,,(x) to find that there

exists y € A such that J = {i € | : y; # x;} satisfies

|J’ < DA\/ Ln(X).

o It follows that (x;);e\s is an increasing subsequence of y, which

proves the first part of the lemma.
Ln(x)—s

since
Ln(x

@ The second part of the lemma follows from Dy >

u— ‘1755 is increasing in u > s.
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Longest increasing subsequence

Theorem

Let m, be a median of L, = L,(Us,

ey Un), so P(L, > mp) < 1/2 and
P(L, < m,) < 1/2. Forevery r =0,

P({Ln = my + r}) < 26" /4mtn)

P({Ly < m, —r}) < 2e~"/4m

so, in particular, for 0 < r

IN

mp,

P({ILH - mn| = r}) < 4e7r2/8mn'
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Longest increasing subsequence

Proof.
o Let A= {x:Ly(x) < mp}andlet B={x:Ly(x)=mp+r}.
o By Talagrand's inequality,

D3/4 1
et < ——= <2
JB P(A)

o Dy> ﬁ on B, the first bound follows.
@ Now let A= {x: L,(x) < m,—r}and B={x:L,(x) = mp} so that
Da(x) = ﬁ on B, so

fr2/4m,,

< -
P(A)

Ol

v
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Lipschitz functions

Definition

Let X = Q1 x --- x Q,. We say that a function F : X — R is 1-Lipschitz
in the sense of Talagrand, if for every x € X there exists a = a(x) such
that, for every y € X,

F(x) < F(y) + da(x, y).
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Talagrand'’s inequality for Lipschitz functions

Theorem

Let P be a product probability measure on the space X = Q1 x -+ x Qp,
and let F : X — R be 1-Lipschitz in the sense of Talagrand. Let mg be a
median for F, so that P(F = mg), P(F < mg) > % Then, for every r = 0,

P({|F — mr| = r}) < 4e~ /%,

Bob Hough Math 639: Lecture 22

May 5, 2017 40 / 61




Talagrand'’s inequality for Lipschitz functions

Proof.
o Let A= {F < mg}.
@ By the 1-Lipschitz property, for each x there exists a = a(x) such that

F(x) < mg + da(x, A) < mg + Da(x).

@ Hence, by Talagrand's inequality,

2
<2e "%

P{F=mr+r}) <P{Da=r}) <

@ To bound the lower tail, argue similarly, replacing mg with mg — r.

Ol

v
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Suprema of linear functionals

e Let Yi,..., Y, be independent random variables taking values in [0, 1]
o Let

n
Z = sup 2 tY;
t€:7 i=1

where .7 is a finite family of vectors t = (t1, ..., t,) € R".

o Let 0 = supe s |t]2.
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Suprema of linear functionals

o Let X =[0,1]"” with P the product measure of the laws of the Y;,
and, for x € X, F(x) = sup,es 21 tiXi.

e Given x = (x1,...,xn) € X, let t = t(x) achieve the supremum of
F(x). Then, for all y € X,

n n n
F(x) = Z tix; < Z tiyi + Z |ti|[xi — yil
i=1 i=1 i=1
- il
< F(y) + UZ; 10k # i),
iz

It follows that o~ 1F is 1-Lipschitz in the sense of Talagrand, by
choosing a = a(x) = o7 1(|t1], ..., |ta]).
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Suprema of linear functionals

We obtain the following corollary.
Corollary

Let {Y;}"_, be independent random variables taking values in [0,1], let 7
be a finite family of linear functionals on R" bounded in ¢? by o, and let

n
Z = sup Z ti Y.
te T i=1
Let mz be a median of Z. Then, for every r = 0,

PH{|Z — mz| > r}) < 4e™"/4"
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First passage percolation

Theorem

Let G = (V,E) be a graph. Let (Ye)ece be i.i.d. random variables
(passage times) taking values in [0,1]. Let  be a set of subsets of E.
Given T € 7, let YT = Y o7 Ye. Define

Ly = | = ] .
7= o Y= i 2, e
eeT
Let D = supyc4 | T| and let m be a median of Zz. Then, for each r > 0,

P({|Z7 —m| > r}) < 4e "/*P,

v

The set 7 could be taken to be a collection of paths connecting a pair of
vertices x, y. Zg is then the lowest cost path among these.
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Further applications

Talagrand's method may also be used to prove concentration for the

traveling salesman problem, and minimum length spanning tree for random
collections of points in [0, 1]2.
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Concentration in Gauss space

Definition
Denote yy(dx) = (2rr)~N/2 exp(—|x|?/2)dx the Gaussian measure on RV,
Define the usual Lipschitz norm of a real function f on RV,

f(x) = fW)

|f||L;p:sup{ :x,yeRN}.
Ix =yl

We say a function is Lipschitz if it has finite Lipschitz norm.
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Concentration in Gauss space

Theorem

Given Lipschitz function f, let

For any t > 0,

(If = Ef| > t) < 2exp(—2t/m% | f ;)

v

With more care, the constant % can be replaced with % in the exponential.
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Concentration in Gauss space

Proof.
o Let f Lipschitz on RV, so f is a.e. differentiable and satisfies
IVE] < |[fllLip-

e Shifting by a constant, assume § fdyy = 0.

@ By convexity
YN (f > t) < exp(—At) fexp()\f)d’y,v

< exp(~At) f f exp[A(F(x) — F(y)]dm (x)dn(y)-

0J

v
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Concentration in Gauss space

Proof.

@ Given x,y € R, let
x(f) = xsin@ + ycos¥, x'(0) = xcosf — ysinf

so that

/2
f(x)—f<y)=f :Qf de_f (VF(x(8)),x (6))d6.

0

@ By Jensen, yn(f > t) is bounded by

S j I exp[ (VF(x(6)), x ()>]dw( oy (y)d6

Ol

v
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Concentration in Gauss space

Proof.

@ For fixed 6, the distribution of (x(),x’(6)) is the same as the
distribution of x, y. Hence

it > 0) < exp(=at) [ exp | 2T, w0 m)
< exp(—At) Jexp (Aif\wF) dn

A2
< exp (—)\t—i- m? |fL,p>

@ Choose A\ = 2||f|| to obtain
Lip

wn(f > t) < exp(=2¢2/m%| f|E;,).
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Log Sobolev inequalities

Definition

Given a probability space (2, X, 1) and a non-negative measurable f,
define it's entropy

Ent,(f) = Jflog fdy — ffd,ulogffdu

where {f(log1 + f)dp < o and o0 otherwise.

This is homogeneous of degree 1.
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Log Sobolev inequalities

Definition

We say a Borel probability measure i on R” satisfies a logarithmic Sobolev
inequality with constant C > 0 if, for all smooth enough functions f,

Ent,(f?) < 2Cf|w\2du.
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Log Sobolev inequalities

Abbreviate v the Gaussian measure on R”".

Theorem

For every smooth enough function f on R”,

Ent, (%) < J|Vf|2dfy

Bob Hough Math 639: Lecture 22 May 5, 2017 54 / 61



Log Sobolev inequalities

Proof.

o Let (Pt)¢=0 denote the Ornstein-Uhlenbeck semigroup, which has
integral representation

P:f(x) = Jf(e_tx + (1= e ?Y)y)dy(y), t>0,xeR"

o Let f be smooth and non-negative, satisfying e < f < 1/e.
o Since Pof = f and lim¢_,o Pef = § fd~,

“ d
Ent,(f) = — , dt P:f log Pfd~ | dt
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Log Sobolev inequalities

Proof.

o We have P; = etl where L = A — x- V. The second order differential
operator L satisfies, for smooth 7, g,

ff(Lg) JVf Vgdy.
@ Hence

d
s f P.f log P.fd~y = fLPtf log P, fd~ + JLPtfdy

IV P f|?
_ e
Pf o

Bob Hough Math 639: Lecture 22 May 5, 2017 56 / 61



Log Sobolev inequalities

Proof.
o Calculate, from the integral representation,

VP:f = e P(VF) = |VP:f| < e 'P(|VF]).
e By Cauchy-Schwarz,

2
P11 < Putr)Pe (70 ).

@ Combining these steps,

Enty(f)éfoooe_” (th(’V:P) )d _ J|Vf|2

The conclusion follows on replacing f with f2 and letting € | 0.

0J

v
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Log Sobolev inequalities

We can now use the Log Sobolev inequality satisfied by Gaussian measure
to obtain the sharper constant in Gaussian concentration.

Theorem
Let F be a 1-Lipschitz function on R". Then

y ({F = JFd'y—ir r}) <e 2
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Log Sobolev inequalities

The following argument is due to Herbst.

Proof.
@ Let F be a 1-Lipschitz function, satisfying |VF| < |F|Lip = 1 a.e.
@ Assume, as we may, that { Fdy = 0.

o Consider f2 = e*F=2*/2_ \We have

)\2 A )\2 )\2 A )\2
J]Vﬂzd’y: 4J\VF]2e F=X2dy < 4fe F=224y,
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Log Sobolev inequalities

Proof.
o Let A(\) = Se’\F_)‘2/2d’y. By log-Sob,

”AF H AF=X/24y — N(N) log A(N) <
which rearranges to

M) <A log AL < )\//\\((;\)) < log A(V).

o It follows that H(\) = 'BARA) i ) > o H(0) = X0 — {Fdry = 0
satisfies H'(\) < 0. Hence AN <

Ol

v
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Log Sobolev inequalities

Proof.
@ We've checked, for all A,

A2
feAde <ez

e Hence P(F > r) < e *+*/2. Choosing A = r proves the claim.
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