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Multiple ergodic averages

The goal of this lecture is to prove the following mean ergodic theorem.

Theorem (Walsh, 2012)

Let G be a nilpotent group of measure preserving transformations of a
probability space (X, Z , ). Then, for every Ty,..., T; € G, for every
fly., fg € LP(X, 2", 1), for every collection of integer valued polynomials
{pij,1<i<I1<j<d}, the averages

N

Z ﬁ (). 7Y ¢
n=1j=1

converge in L?(X, 2, ).
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Background

@ The proof is combinatorial in nature, and is based on a structure vs.
randomness dichotomy.

@ The following structural statements are based on the paper
“Decompositions, approximate structure, transference, and the
Hahn-Banach theorem,” by Tim Gowers (Bull. London Math Soc., 42
(2010) pp. 573-606).
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Structure theorems

Theorem (Hahn-Banach)

Let K be a convex body in R" and let f be an element of R" that is not
contained in K. Then there is a constant 3 and a non-zero linear

functional ¢ such that {f,$) = [ and {g,p) < [ for every g € K.
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Structure theorems

Theorem

Let Ky, ..., K, be closed convex subsets of R", each containing 0, let

ci, ..., Cr be positive real numbers, and suppose that f is an element of R"
that cannot be written as a sum

i+ +f, fi € ¢iK;.

Then there is a linear functional ¢ such that {f,¢) > 1 and (g, ¢) < c,-_1
for every i < r and every g € K.
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Structure theorems

Proof.
o Define K = ) . ¢iKi.
@ Since K is closed, there exists € > 0 and a small Euclidean ball B
such that (1+¢)71f ¢ B+ K.
e Apply Hahn-Banach to find ¢ and f3 such that (1 + ¢)~(f, ¢) = 3
and (g, ¢y < (3 for every g € B+ K.
@ Since 0 € K we may take g = 1.
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Structure theorems

Theorem

Let K1, ..., K, be closed convex subsets of R", each containing 0 and
suppose that f is an element of R" that cannot be written as a convex
combination

ah+---+cf, fie K.

Then there is a linear functional ¢ such that {f,¢) > 1 and {(g,¢) < 1 for
every i < r and every g € K;.

v

Bob Hough Math 639: Lecture 15 April 4, 2017 7 /57



Structure theorems

Proof.
@ Let K be the set of all convex combinations ¢i1f; + - - - + ¢, f, with
f,' € K,'.
@ Since K is closed and convex, there is an € > 0 such that
(1+e)71f ¢ K.

@ By Hahn-Banach, there is a functional ¢ and a constant 3 such that
(1+e)Wf,¢)=> B and (g,¢) < Bforall ge K.
@ As before, 8 may be taken equal to 1, since K is closed.
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Structure theorems

Definition

If | - || is a norm on R", the dual norm | - |* is defined by the formula
[¢l* = max{<f,¢): || <1}.

The dual of a norm | - || defined on a subspace V of R" is the seminorm

[£1* = max{{f,g): g€ V, |g] <1}.

If f € R" a support functional for f is a linear functional ¢ # 0 such that

(F, 0 = Ifllgl"
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Structure theorems

Theorem

Let ¥ be a set and, for each o € ¥, let | - ||, be a norm defined on a

subspace V,, of R". Suppose that Y _s Vi, = R", and define a norm | - |
on R" by the formula

Ix| = inf{lxilloy + - -+ [xlloy = 30 + -+ 4+ X = X, 01,0, 04 € 2}

The dual norm | - |* is given by the formula

|2]* = supflz]5 : o € X}
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Structure theorems

Proof.
o First suppose that |z|* > 1 for some o € X. Then there exists x € V,,
such that ||x|, < 1 and [{(x,z)| = 1. Since |x| < 1, |z]|* = |z|%.
@ Now suppose [|z|* > 1. Then there is x with |x| < 1 and
|(x,z)| = 1+ € for some € > 0. Choose xi, ..., Xk such that x; € V,,
for each i, x; + -+ xk = x and |x1|o; + - + |Xk[loy <1+ €. Then

2 Kxi, 2| > xalloy + -+ + [kl
i

so there is i with [(xj, )| > |Xis,, and |z|F > 1.
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Structure theorems

Corollary

Let ¥ < R" be a set that spans R" and define a norm | - || on R" by the
formula

k k
|f]| = inf {2 I\ F =D Nioj, 01,04 € z} :
i=1 i=1

Then this formula does indeed define a norm, and its dual norm | - |* is
defined by the formula

|1 = sup{[<f, )| - o € X}.

This is the special case in which V,, is the span of o and |Aco|, = |\|.
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Structure theorems

Theorem

Let || - | be any norm on R" and let f € R". Then f can be written as
g + h in such a way that ||g| + | h|* < ||f]2.
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Structure theorems

Proof.
@ Let K; and K; be the unit balls in the || - | and | - |* norms.
@ Suppose for contradiction that the claim is false. Then f/||f|2 is not
a convex combination c1g1 + g with gj € K;.
e By Hahn-Banach, we obtain ¢ with {(f,¢) > [f]2 and |¢|* and |9
both at most 1.

@ The first claim implies |¢[l2 > 1, while the second implies
[613 = (6. ¢» < [ll4]* < 1, a contradiction.
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Structure theorems

@ Note that by scaling the norm, for any € > 0 it is possible to find g, h,
f =g+ hwith e|g] + e H[A[* < [f]2.

@ By admitting a small L? error, the following decomposition theorem
does better by replacing the inverse relationship €, ¢! in the two
norms, with an arbitrary growth function.
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Structure theorems

Theorem

Let f € R" with |[f|2 <1, and let | - | be any norm on R". Let € > 0 and
let n : R, — R, be any decreasing positive function. Let r = [2¢ ]| and
define a sequence Cy, ..., C, by setting C; = 1 and

C,‘ = 27’](C,'_1)_1, i > 1.
Then there exists i < r such that f can be decomposed as fi + f, + f3 with
CHAN +n(G) MR + e a2 <

In particular, |f]|* < G, |f| <n(G) and |f3]2 < €
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Structure theorems

Proof.

@ Suppose, for contradiction, that no such decomposition exists.
Applying Hahn-Banach for each i with the convex set

Ki={g=g+g&+e: G lal* +n(C) el + ¢ esl2 < 1},
there exists ¢; satisfying (¢;, f) > 1 and such that
l6il < G7% llill* < m(C)7Y, Igil < €t

@ Notice

lo1+- -+ Plla =1+ +¢r, )=
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Structure theorems

Proof.
e If i < then
o 1
(bi, 8 < lillllgil* < m(CH G < 5
so that
r(r—1)

61+ -+ + ol < e7lr+ B

This is a contradiction, since r > %
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Structure theorems

Walsh uses the following variant of the last structure theorem, in which R”

is replaced by a Hilbert space .5#, and on which there are a family of
equivalent norms.
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Structure theorems

Theorem (Hilbert space decomposition theorem)
Let A be a Hilbert space with norm | - |.

o Let (| - |n)nen be a family of norms on F equivalent to || - |, and

satisfying | - |yyq1 < |- [y for every N.
o Let 0 <6 < c <1 be positive real numbers, n: R, — R, a
decreasing function, and 1) : N — N a function satisfying 1»(N) = N.
o Define constants Cpp5-2) := 1, Cy—1 = max{C,, 2n(Cp)~ 1 forn>=2

@ For every integer M_ > 0 there exists a sequence
M_ <M <---< M[z(;—z] < M, = O/\/L(;,C,’L[J(l)a S.t.

for any f € A with |f| < 1 there is 1 < i < [2672] and integers
AB, M_<A<cM <{(M)<B, sothatf =fi+f+f

Ifile < G, [2l[a < n(C), [Ifs] <. )
Math 639: Lecture 15 April 4, 2017 20 / 57




Structure theorems

o When ||f|% is small, we say that f is ‘random’, while when |f||g is
small we say that f is ‘structured.” This terminology comes from
thinking of |f]% as |0, the co-norm on the Fourier transform, so
that |f[ g = || is the 1-norm on the F.T.

@ The win in Walsh's version of the structure theorem is that the
structured part in the decomposition is at a higher level than the
random part.
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Structure theorems

Proof of Walsh's structure theorem.

o Set Ay =M_, My :=[c tA; + 1] and By = (M). If no
decomposition with i = 1 exists then obtain ¢; € JZ satisfying

(o1, £) = L, Jnllf, < G lonlliy < n(G)77 gl <671

o Recursively define parameters A; := B;_1, M, := [c"1A; + 1],
Bj := 1(M;), and, if no decomposition exists with these parameters,
find ¢; satisfying the corresponding estimates.

e For i < j bound

)

N

Ko, o0l < Islarlilla, < leilasleils, < n(G) G <

2 :
and hence |[¢1 + -+ + @[3 < 672r + 5L, which forces the process
to terminate as before.
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Systems of finite complexity

Definition
Fix a probability space X and a nilpotent group G of measure preserving
transformations on X.

@ A G-sequence is a sequence {g(n)}ncz taking values in G.

o A tuple g = (g1, ..., 8j) of G-sequences is a G-system.

@ Two systems are equivalent if they contain the same set of
G-sequences, so, for instance, if g and h are G-sequences then (h, g),
(g, h) and (g, h, h) are equivalent.
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Systems of finite complexity

Definition
@ To a pair of G-sequences g, h and positive integer m, associate the
G-sequence

(glhym(n) := g(n)g(n + m) " h(n + m).

@ The m-reduction of a system g = (g1, ..., gj) is the system

gm = (&1, 8-1,{gi116)m:{gjl&1)m: " ,{&|&~1)m)-
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Systems of finite complexity

Definition (Complexity of a system)

o We say a system g has complexity 0 if it is equivalent to the trivial
system (1¢).

@ Recursively, a system g has complexity d for some positive integer
d > 1 if it is not of complexity d’ for some 0 < d’ < d, and it is
equivalent to some system h for which every reduction h?, has
complexity at most d — 1.

@ A system has finite complexity if it has complexity d for some d > 0.

v
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Systems of finite complexity

Definition
o For integer N > 1, and fi, ..., fi € L™(X), define ergodic average

J
dﬁ[fiva 6] = Ene[N] [Hgl(n)f;] :
i=1

@ Convergence of the ergodic averages of a system for all test functions
implies convergence of the ergodic averages of an equivalent system
for all test functions, since T(f)T(f) = T(fAf).

o Given a pair of positive integers N, N’, define

%/\%,N’[fb o00g) 6] = Mﬁ[fiv oo0g 6] - 'd[\g/-/[fla 5309 f;]
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Finite complexity theorem

Theorem (Finite complexity theorem)
@ Let G and X as above, and let d > 0.

o Let F: N — N be some nondecreasing function F(N) = N for all N,
and let e > 0.

@ For every integer M > O there exists a sequence of integers,
depending on F,e and d,

M< My <o < Mgeq) < M(e, F, d)

such that

for every system g = (gi, ..., gj) of complexity at most d
for every choice of functions fi, ..., f; € L*(X) with |fi| <1

there exists some 1 < i < K, 4 such that, for every
M; < N,N' < F(My), |8 6, . 5-]HL2(X) <e
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Finite complexity theorem

The finite complexity theorem implies the L?-convergence of all finite
complexity ergodic averages since if szfﬁ[fl, ..., ;] fails to converge, then
there exists € > 0 and increasing function F(N) so that

> €

g
H"Qfo(N)[fl’ o f] 12(X)

for every positive integer N.
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Reducible functions

From now on we work with the specific choices in the structure theorem

P (X)_i C*— C
T o6 T T o1k - T F

Definition (Reducible functions)

Given a positive integer L, we say o € L*(X), [lo|« < 1, is an L-reducible
function with respect to g if there exists some integer M > 0 and a family
bo, b1, ..., bj—1 € L(X) with |[bj| <1, such that for every positive
integer | < L,

€

= 16C*
19(X)

fi=il
8i()o — Emem [(<&'|lc>m(/))bo H(<gj|gi>m(/))bi]

i=1
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Weak inverse result

Theorem (Weak inverse result for ergodic averages)
Assume the inequality

€
H‘Q(I\%[flv SRE/EY U]HQ = 6

e < 3C, some 1 < C < C* and some
fi,...,fi—1 € L°(X) with |fi|c < 1. Then there exists a constant

0 < ¢1 < 1, depending only on €, such that for every positive integer
L < c1 N there is an L-reducible function o with

holds for some u,

{u,o) >2n(C).
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Weak inverse result

Proof.

Expand the square in the L? norm to find

-1
5 = <f‘2{/\g}[f1’ s =1, u], Enepn [(Hgi(”)f:) gj(n)UI>

:<Ene[N][ () 152{ fl’ ng ’ ’] u>'

h:= Ene[N] [gj(n)_ljz{ f17 .y ng / /] .

Set o = % We claim that o is L-reducible for every L > ¢; N, some
0 < c¢1 < 1. This suffices since {(u, o) > 2n(C). O
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Weak inverse result

Proof.
Let 7 : 96(C*)2 and let 0 < / < ¢ N. Use
|§[f, ... fi-1,u]| , < 3C < 3C*. Since the average is short,
Jj—1 i
h— Ene[N] [gJ(I a4 n)—lﬂﬁ[.] ng(/ + n)_lg’.(/ = n)f,] < 16C*
i=1 LX)
Shifting by gj(/),
J*l c
gi(Nh— Enen <gJ|1G>n (gjlgipn())fi < 16C*
’:1 L*(X)
Choose M := N, by = s=#¢[-] and b; = f;. O
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Bounds for structured functions

Theorem (Stability of averages for structured functions)

For every positive integer M, there exists K = K(e, d), and a sequence
Mi < My <o < Mg < MP

depending on My, €, d, F such that if
o fl, o00g f;'_l € LOO(X),

f:Hoo <1

o f =Sk \oe, YEZL M| < C* and each o, is an L-reducible
function for some L = F(M*)

then there exists some 1 < i < K such that

Hdl\iN’[fh i) 6'—1’ f]

€
< -
2(x) 4

for every pair M; < N, N < F(M;).
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Bounds for structured functions

Proof.

Since o is L-reducible, choose corresponding integer M(t) and functions
b{®) € L(X). Using the reducibility, replace &7E[fi, ..., fi_1,0¢] with

Mm[ (Hg, ,>(<gjuc>m< )e) (f[<<gjrg,->m<n>>b§”>]

i=1

making error at most 1z&. Thus, for N, N’ < L

,\é;"N,[fl,...,f,-,l,f]H is

bounded by ?
« .\ g 0 (O 0
8+;)|)\t|Eme[Mt] iy | s 2,867, B0, 60, | oo
D/
RIS s T



Bounds for structured functions

Proof.
o Let v = &=
@ Since g is lower complexity than g, we invoke the bounded
complexity theorem inductively. Recall that this theorem provides for

some 1 < i< Ky 4_1 a range I\/I;Y’F’d <SN<KF (M?’F’d>, such that
the average at length N varies by at most « over the interval.

@ Our goal now is to find an interval [M, M’] over which this is valid for
many t.

Ol

v
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Bounds for structured functions

Proof.
o Let r = O 4(1) and define functions Fi, F», ..., F, : N — N given by

Fr=F,  Fia(N):= max Fi(MFid=1y,

@ For each tuple 1 < iy, ..., is < K, s < r and integer M, define
. X Fp,d—1 ~,Fs,d—1
(iyersds) o [ .. v, F1,d—1\""2
M : /\/7,-1 ) ) .
Is

Thus M(1) is the integer MZ’Fl’d_l found by starting the sequence at
M using F1, M(:2) the result of starting at M1 using F», etc. Thus

| M@, F (M) 5 [ M2, F (M0 ] 5
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Bounds for structured functions

Proof.
e Note Hﬂﬁf’:\,, [fl, oy Fi1y b(()t)""’bfgi)l]HLw(x) < 2. Hence

< 2C*.

L2(X)

*
«52{/5:"/\// |:f17 ooog 6'—17 b(()t)7 bgt)v 000y bj(i)l]

k-1
2 |Ae| Eme[m,]
=0

@ Applying the finite complexity theorem inductively, the reduced
average at t is bounded by v for all pairs N, N’ € [I\/I,f"), F (I\/Ii')>]
for some 1 < i < K which depends on t.

@ By the pigeonhole principle we can pick /1 so that the sum of |\;| for
which i # i; is at most (1 — %) C*.

0J

v
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Bounds for structured functions

Proof.

o lterate the argument using M(il), F>, etc. r times to find M (Ls-ir)
%
such that the contribution of |\¢| for which &/5™,[] > v for some

M Citseesir) < N,N < F (M(ih..,ir))

is at most (K1) C* < 5.
@ The contribution of the remaining part is at most >, [\s]y < 5.
o Putting together the estimates gives, for all N, N/ in the interval,

€
Hg{,\i,\,,[ﬂ, i, f]H2 <z

Ol
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Finite complexity theorem

@ The weak inverse theorem bounds ergodic averages for functions
which do not correlate strongly with a reducible function, while the
previous theorem shows that the averages for reducible functions are
slowly varying.

@ We now combine these estimates using the structure decomposition
theorem to prove the theorem on finite complexity.
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Finite complexity theorem

Proof of finite complexity theorem.

e Fix X, G, F,¢,d and g as in the theorem, and assume that all
reductions g, of g have complexity at most d — 1.

@ The proof is by induction. We assume the statement for all d’ < d.
o Let My be the starting point of the sequence in the theorem.

o Let § := 555 and n(x) := 2333 as previously. This determines the
constants Cy, Gy, ... and C* which appear in the structure
decomposition theorem.
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Finite complexity theorem

Proof of finite complexity theorem.
o Given a positive integer L, write 2; for the set of L-reducible

functions, and
)
ZZ’ n= ZL U BQ (F) .

@ Define the norm |- |, = | - Hzf by

k—1 k—1
|fl5s o= inf { MUINL =) Nojo5€ zj} :

j=0 j=0
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Finite complexity theorem

Proof of finite complexity theorem.

o Define ¥y (M) = F(M*) where M* is the upper bound on the sequence
started from M = M, in the theorem on structured functions.

e Given fi,f,...,fje L%(X), |fi]e < 1.

o Since X, <X/, |- |71 <|- i, perform decomposition of ;
according to (| - [[1)ren, ¥, 6, n and with ¢; = ¢ the constant from
the weak inverse theorem.

@ We thus find a constant 1 < C; < C*, an M with My < M = O(1)
and

where th:g |\e| < G, each o € Tf for some B = (M),
|ul% < n(C) for some A < ciM and |v]2 < 6.
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Finite complexity theorem

Proof of finite complexity theorem.
@ By absorbing any o; € B»(6/C*) into v, so that ||v|2 < 2§, we may
assume that all o+ € 2.
@ Applying the bound for structured theorems, we obtain that

<
L2(X)

W[

k—1
H%ﬁ’/\// [flv L) fj—l) Z )\tgt]
t=0

for all M; < N, N’ < F(M;), for some index i.
@ The contribution of the L2 error is controlled by using that ||fi|o < 1.
L]

V.
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Finite complexity theorem

Proof of finite complexity theorem.

@ To handle u, we first control it's large values. Let S be the set of

points where |v(s)| < C.
5\2
o Note u(S5°¢) < (%)

o Since [lo¢[ 0(x) < 1, one has |ulsc(x)| < 3|v(x)], so
Julsell2 < 3|2

o Similarly, [uls|s < 3C;. Also, for every o € X4,
[Kuls,o)| < [Ku,0)| + [Kulse, olse)|
< fula + [ulse|2]lolse]2 < 2n(G).

@ By the weak inverse theorem,

|%N,N’[f1, o fi1, uls]H2 <§.

Bob Hough Math 639: Lecture 15

April 4, 2017

44 | 57



Polynomial systems

Definition
e Given a G-sequence {g(n)}nez taking values in a nilpotent group G
and an integer m, define operator D,, by
(Dmg)(n) := g(n)g(n+m)~t. Thus (g|h)m(n) = (Dmg)(n)h(n+ m).
@ A G-sequence g is polynomial if there exists some positive integer d
such that, for every choice of integers my, ..., my,

Dy Dy - - Dmyg = 1.
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Polynomial systems

Definition

Let Z, = {0,1,2,...} U {—0}. A vector d = (di, ..., d.) € ZS is
superadditive if d; < d; for all i < j and d; + d; < d;4; for all i, j with
i+j<c.

Forde Z, and t € Z, let

d_*t_{ d—t t<d

—00 t>d

If d = (di,...,dc) €ZE, let d — t = (dy —x t,...,dc —4 t).

Irlwhat follows we write just — for —,. Notice that
(d —t1) — tp = d — (t1 + t2). Also, subtraction preserves the property of
being superadditive.
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Polynomial systems

Definition

Let G be nilpotent of class ¢, and let

G =G 2 G@) 2+ 2 G(e) 2 Gerny = {16}

be the lower central series of F, G 11y =[Gy, G],i = 1,2,...,c.
Let ¢ : Z — G be a polynomial mapping, and let d = (di, ..., d.) € ZS be

a superadditive vector. We say ¢ has lc-degree < d if for each i = 1, ..., c,
o If dj = —o0, then ¢(Z) € G(,'+1)

o If d; > 0 then for any hy, ..., hg,+1, Dp, - - thin)(Z) < G(jy1)-

Notice that if ¢ has lc-degree d then Dy¢ has lc-degree d — 1.
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Polynomial systems

Leibman proved the following theorem regarding polynomial sequences.

Theorem (Leibman'’s theorem on polynomial sequences)
Let d = (dy,...,ds) be a superadditive vector, and let t, t1,t» > 0 be
non-negative integers. Then we have the following properties:
@ If g is a polynomial sequence of degree < d — t, then Dpg is a
polynomial sequence of degree < d — (t + 1) for every m € Z.
@ The set of polynomial sequences of degree < d — t forms a group.
© If g is a polynomial sequence of degree < d — t; and h is a polynomial
sequence of degree < d — ty, then [g, h| is a polynomial sequence of
degree < d — (t1 + t2), where [g, h](n) := g~ (n)h=1(n)g(n)h(n).
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Polynomial systems

Proof of Leibman’s theorem on polynomial sequences.
@ The first claim is immediate.

@ The proof of the remaining claims is a joint downward induction on t
and t; + to.

@ Note that the second claim is trivial if t > d., since in that case,
h = 1¢. Similarly, the third claim is trivial if t; + to > 2d..

@ Thus we assume both claims hold for t > s+ 1, t; +tb > s+ 1 and
prove that they hold for t = t; + t, = s.

Ol

v

Bob Hough Math 639: Lecture 15 April 4, 2017 49 / 57



Polynomial systems

Proof of Leibman’s theorem on polynomial sequences.
@ We first check the multiplication law.

Dm(g182)(n) = g1(n)g2(n)g2(n + m) *g1(n+ m)~*

= £1(n)Dmg2(n)g1(n) ' Dmg1(n)
= Dmg2(n)[Dmgz2(n), g1 *(n)] Dmegx (n).

This has lc-degree < d — t — 1 by applying the inductive assumption.
@ To check the inverse property, use induction in
Dim(g™")(n) = g (n)g(n+ m)
— g ' (n)D_pmg(n+ m)g(n)
= [g(n), D_mg(n + m)"*](D—_mg(n + m))~*.
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Polynomial systems

Proof of Leibman’s theorem on polynomial sequences.

@ To prove the claim regarding commutators, we use the identity
[xy, uv] =[x, u][x, v] [v, [u, x]] [[x, v] [v, [u, x]], [x, u]]
< [x, vl v, Lus x]] [x; ul y] Ly, vl v, [u, y1] Ly, b
in the expression
Dimlg1,&2](n) = [g1(n), g2(n)][g1(n + m), g2(n + m)] ™
= [g1(n), &2(n)][D-mg1(n + m)g1(n), g2(n)(D-mga(n + m)) 1] .

In making the expansion, [y, u] = [g1(n),g2(n)], and this cancels the
leading term. All remaining commutators are lower degree, so that
the claim follows by induction.

Ol
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Polynomial systems

Definition

Let g = (g1,82,-..,8j) be a polynomial system in a nilpotent group G. A
step consists of replacing g with an equivalent sytem, then reducing by an
integer m. We write the reduction of g as

g* = (g17 -~-7gj—17<gj’16>, <gj|g1>7 7<gj‘gJ—1>)7
{g|h)(n) = Dg(n)(Dh(n))~*h(n),

omitting the dependence on m.
The complete reduction of a system g is the system

g** = (g17 ey 8j—1, <gJ’g1>? ey <gj‘gj—1>)

A complete step consists of replacing g with an equivalent system, then
performing a complete reduction.

Bob Hough Math 639: Lecture 15 April 4, 2017 52 / 57



Polynomial systems

Walsh proves the following reduction theorem which reduces the main

theorem on multiple ergodic averages to his theorem on systems of
bounded complexity.

Theorem (Reduction theorem)

Let g be a polynomial system of size lg| < C1 and degree < d for some
superadditive vector d = (di,...,ds). Then
@ One can go from g to the trivial system (1) in O¢, 5(1) steps.

@ One can go from g to a system consisting of a single sequence of
degree < d in O, 4(1) complete steps.
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Polynomial systems

Lemma

Suppose sy, s, are sequences of degree < d and h;, h; are sequences of

degree < d — 1. Then
<51h1|52h2> = 52/7
where h has degree < d — 1. Also, (syh1|sihy) = s1¢{h1|ho).
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Polynomial systems

Proof.

Calculate

<Slh1|52h2> = D(Slhl)D(Szhz)_ISth
= 52D(5]_h]_)D(52h2)_1[D(Slhl)D(Szhz)_l, 52]h2
=. Szh.

Also,

(sthi|s1hodm(n) = sy(n)hy(n)hi(n + m)"tsy(n + m)~tsy(n + m)ha(n + m)

s1(n)Ch1|h2)m(n).
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Polynomial systems

Proof of reduction theorem.
o Write

where each s; is a polynomial sequence of degree < d and each h; is a

polynomial system of degree < d — 1, and where
(hl,hQ,...,h) (shl,shg,...,shj).

° We argue that in O(Cl, d) steps we can produce a system
= ho® @1 sih; with |&] < O(Cy, d)lgl.

° Notlce (sih;j,, 1) has degree < d — 1. Thus, when a single step is
performed, hy is replaced with a system of size < 2|hy| + 1, while h;

is replaced by a system of size < 2|h;| for i </ —1, and s;h; is
replaced with s;hj*.

Ol
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Polynomial systems

Proof of reduction theorem.
@ By the inductive assumption on complete steps, h; may be reduced to

(1g) in O(Cy,d) steps, and eliminated in the following step.

@ We need to prove the corresponding inductive statement for reducing
complete steps, but the proof is the same.

Ol

v

Bob Hough Math 639: Lecture 15 April 4, 2017 57 / 57



