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Probability spaces

Definition

A probability space is a measure space (Ω,F ,Prob) with Prob a positive
measure of mass 1.

Ω is called the sample space, and ω ∈ Ω are called outcomes.

F , a σ-algebra, is called the event space, and A ∈ F are called
events.
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Algebras of sets

Definition

A collection of sets S is a semialgebra if

If S ,T ∈ S then S ∩ T ∈ S

If S ∈ S then Sc is the finite disjoint union of sets of S .

Example

The empty set together with those sets

(a1, b1]× · · · × (ad , bd ] ⊂ Rd , −∞ ≤ ai < bi ≤ ∞

form a semialgebra in Rd .
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Algebras of sets

Definition

A collection of sets S is an algebra if it is closed under complements and
intersections.

Lemma

If S is a semialgebra, then S , given by finite disjoint unions from S , is
an algebra.

Definition

A σ-algebra of sets is an algebra which is closed under countable unions.

Bob Hough Math 639: Lecture 1 January 24, 2017 4 / 54



Borel σ-algebra

Definition

Given a collection of subsets Aα ⊂ Ω, the generated σ-algebra σ({Aα}) is
the smallest σ-algebra containing {Aα}.

Definition

In the case that Ω has a topology T of open sets, the Borel σ-algebra is
σ(T ).
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Borel σ-algebra

Definition

The product of measure spaces (Ωi ,Fi ), i = 1, ..., n is the set
Ω = Ω1 × ...× Ωn with the σ-algebra F1 × ...×Fn = σ (

⋃n
i=1 Fi ).

Exercise

Let d ≥ 1. With the usual topologies, the Borel σ-algebra BRd is equal to
BR × ...×BR (d copies).
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Dynkin’s π − λ Theorem

Definition

A π-system is a collection P of sets closed under finite intersections. A
λ-system is a collection L of sets satisfying the following

Ω ∈ L

For any A,B ∈ L satisfying A ⊂ B, B \ A ∈ L

If A1 ⊂ A2 ⊂ ... is a sequence from L and A =
⋃∞

i=1 Ai then A ∈ L .
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Dynkin’s π − λ Theorem

Lemma

Let L be a λ-system which is closed under intersection. Then L is a
σ-algebra.

Proof.

If A ∈ L then Ac = Ω \ A ∈ L .

If A,B ∈ L then A ∪ B = (Ac ∩ Bc)c ∈ L .

Thus, if {Ai}∞i=1 is a sequence in L , then for each n,
⋃n

i=1 Ai ∈ L ,
and hence

⋃∞
i=1 Ai ∈ L .
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Dynkin’s π − λ Theorem

Theorem (Dynkin’s π − λ Theorem)

If P ⊂ L with P a π-system and L a λ-system then σ(P) ⊂ L .
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Dynkin’s π − λ Theorem

Proof.

Let `(P) be the smallest λ-system containing P. We show that `(P) is
a σ-algebra.

Let A ∈ `(P) and define LA = {B : A ∩ B ∈ `(P)}.
We check that LA is a λ-system.

I Ω ∈ LA since A ∈ `(P)
I If B,C ∈ LA and B ⊃ C , then

A ∩ (B − C ) = (A ∩ B)− (A ∩ C ) ∈ `(P).
I If B1 ⊂ B2 ⊂ ... is a sequence from LA with B =

⋃∞
i=1 Bi then

B1 ∩ A ⊂ B2 ∩ A ⊂ ... has B ∩ A =
⋃∞

i=1(Bi ∩ A), and hence
B ∩ A ∈ `(P) so B ∈ LA.

If A ∈P then LA = `(P). Hence, if B ∈ `(P) then A ∩ B ∈ `(P).
But then this implies LB = `(P). It follows that for all A,B ∈ `(P),
A ∩ B ∈ `(P).
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Measures

Definition

A positive measure on an algebra A is a set function µ which satisfies

µ(A) ≥ µ(∅) = 0 for all A ∈ A

If Ai ∈ A are disjoint and their union is in A , then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai ).

If µ(Ω) = 1 then µ is a probability measure.
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Probability measure properties

A probability measure satisfies the following basic properties.

(Monotonicity) If A ⊂ B then Prob(A) ≤ Prob(B).

(Sub-additivity) If A ⊂
⋃

i Ai then Prob(A) ≤
∑

i Prob(Ai )

(Continuity from below) If A1 ⊂ A2 ⊂ ... and A =
⋃

i Ai then
Prob(Ai ) ↑ Prob(A)

(Continuity from above) If A1 ⊃ A2 ⊃ ... and A =
⋂

i Ai then
Prob(Ai ) ↓ Prob(A).
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Atomic measures

Definition

A probability space (Ω,F ,Prob) is non-atomic if Prob(A) > 0 implies that
there exists B ∈ F satisfying B ⊂ A and 0 < Prob(B) < Prob(A).
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Outer measures

Definition

An outer measure µ∗ on a measurable space (Ω,F ) is a set function
µ∗ : F → [0,∞] satisfying

µ∗(∅) = 0 and µ∗(A1) ≤ µ∗(A2) for any A1,A2 ∈ F with A1 ⊂ A2.

µ∗ (
⋃∞

n=1 An) ≤
∑∞

n=1 µ
∗(An) for any countable collection of sets

{An} ⊂ F .

Bob Hough Math 639: Lecture 1 January 24, 2017 14 / 54



Outer measures

Definition

Given an outer measure µ∗ on a measurable space (Ω,F ), a set A ∈ F is
measurable (in the sense of Carathéodory) if for each set E ∈ F ,

µ∗(E ) = µ∗(E ∩ A) + µ∗(E ∩ Ac).
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Outer measures

Theorem

Let µ∗ be an outer measure on a measurable space (Ω,F ). The subset G
of µ∗-measurable sets in F is a σ-algebra, and µ∗ restricted to this subset
is a measure.

See e.g. Royden pp.54–60.
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Lebesgue measure

An outer measure on (R, 2R) is given by

µ∗ (A) = inf

{ ∞∑
i=1

bi − ai : A ⊂
∞⋃
i=1

(ai , bi ]

}
.

Lebesgue measure is obtained by restricting µ∗ to its measurable sets. The
σ-algebra so obtained is larger than the Borel σ-algebra.
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Carathéodory’s Extension Theorem

Theorem

Let µ be a σ-finite measure on an algebra A . Then µ has a unique
extension to σ(A ).
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Carathéodory’s Extension Theorem

Proof of uniqueness.

Let µ1 and µ2 be two extensions of µ to σ(A ). Let A ∈ A satisfy
µ(A) <∞ and let

L = {B ∈ σ(A ) : µ1(A ∩ B) = µ2(A ∩ B)}.

We show that L is a λ-system. Since A ⊂ L and A is a π-system, it
then follows that L = σ(A ). Uniqueness then follows on taking a
sequence {An} with An ↑ Ω and µ(An) <∞.
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Carathéodory’s Extension Theorem

Proof of uniqueness.

To verify the λ-system property, observe

Ω ∈ L

If B,C ∈ L with C ⊂ B, then

µ1(A ∩ (B − C )) = µ1(A ∩ B)− µ1(A ∩ C )

= µ2(A ∩ B)− µ2(A ∩ C ) = µ2(A ∩ (B − C )).

If Bn ∈ L and Bn ↑ B then

µ1(A ∩ B) = lim
n→∞

µ1(A ∩ Bn) = lim
n→∞

µ2(A ∩ Bn) = µ2(A ∩ B).
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Carathéodory’s Extension Theorem

Proof of existence.

Define set function µ∗ on σ(A ) by

µ∗(E ) = inf

{ ∞∑
i=1

µ(Ai ) : E ⊂
∞⋃
i=1

Ai ,Ai ∈ A

}
.

Evidently µ∗(A) = µ(A) for A ∈ A . Also, A ∈ A is measurable, since for
F ∈ σ(A ) and ε > 0 there exists {Bi}∞i=1 a sequence from A satisfying∑

i µ(Bi ) ≤ µ∗(F ) + ε. Then

µ(Bi ) = µ∗(Bi ∩ A) + µ∗(Bi ∩ Ac)

µ∗(F ) + ε ≥
∑
i

µ∗(Bi ∩ A) +
∑
i

µ∗(Bi ∩ Ac) ≥ µ∗(F ∩ A) + µ∗(F c ∩ A).

which gives the condition for measurability.
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Carathéodory’s Extension Theorem

Proof of existence.

µ∗ satisfies the properties of an outer measure, since

If E ⊂ F then µ∗(E ) ≤ µ∗(F )

If F ⊂
⋃

i Fi is a countable union, then µ∗(F ) ≤
∑

i µ
∗(Fi ).

The restriction of µ∗ to its measurable sets gives the required extension of
µ.
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Random variables

Definition

A real valued random variable on a measure space (Ω,F ,Prob) is a
function X : Ω→ R which is F -measurable, that is, for each Borel set
B ⊂ R,

X−1(B) = {ω : X (ω) ∈ B} ∈ F .

A random vector in Rd is a measurable map X : Ω→ Rd .

Given A ∈ F , the indicator function of A is a random variable,

1A(ω) =

{
1 ω ∈ A
0 ω 6∈ A

.
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Random variables

Theorem

If X1, ...,Xn are random variables and f : (Rn,BRn)→ (R,B) is
measurable, then f (X1, ...,Xn) is a random variable.

Theorem

If X1,X2, ... are random variables then X1 + X2 + ...+ Xn is a random
variable, and so are

inf
n
Xn, sup

n
Xn, lim sup

n
Xn, lim inf

n
Xn.

Proof.

Exercise, or see Durrett, pp. 14–15.
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Distributions

Definition

The distribution of a random variable X on R is the probability measure µ
on (R,B) defined by

µ(A) = Prob(X ∈ A).

The distribution function of X is

F (x) = Prob(X ≤ x).
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Distributions

Theorem

Any distribution function F has the following properties:

1 F is nondecreasing.

2 limx→∞ F (x) = 1, limx→−∞ F (x) = 0.

3 F is right continuous, that is, limy↓x F (y) = F (x).

4 If F (x−) = limy↑x F (y) then F (x−) = Prob(X < x).

5 Prob(X = x) = F (x)− F (x−).

Furthermore, any function satisfying the first three items is the distribution
function of a random variable.
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Distributions

Proof.

All of the forward claims are straightforward.
For the reverse claim, let Ω = (0, 1), F = B and set Prob to be Lebesgue
measure. Define

X (ω) = sup{y : F (y) < ω}.

Then
{ω : X (ω) ≤ x} = {ω : ω ≤ F (x)},

which follows by the right-continuity of F . Hence Prob(X ≤ x) = F (x).
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Distributions

Definition

If X and Y induce the same distribution µ on (R,B), we say X and Y are
equal in distribution. We write X =d Y .

Definition

When the distribution function F (x) = Prob(X ≤ x) has the form

F (x) =

∫ x

−∞
f (y)dy

we say that X has density function f .
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Example distributions

Uniform distribution on (0,1). Density f (x) = 1 for x ∈ (0, 1) and 0
otherwise.

Exponential distribution with rate λ. Density f (x) = λe−λx for x > 0,
0 otherwise.

Standard normal distribution. Density f (x) =
exp

(
− x2

2

)
√
2π

.
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Example distributions

Uniform distribution on the Cantor set. Define distribution function F
by F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ 1, F (x) = 1

2 for x ∈ [13 ,
2
3 ],

F (x) = 1
4 for x ∈ [19 ,

2
9 ], F (x) = 3

4 for x ∈ [79 ,
8
9 ],....

Point mass at 0. The distribution function has F (x) = 0 for x < 0,
F (x) = 1 for x ≥ 0.

Lognormal distribution. Let X be a standard Gaussian variable.
exp(X ) is lognormal.

Chi-square distribution. Let X be a standard Gaussian variable. X 2

has a chi-squared distribution.
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Example distributions on Z

Bernoulli distribution, parameter p. Prob(X = 1) = p,
Prob(X = 0) = 1− p.

Poisson distribution, parameter λ. X is supported on Z and
Prob(X = k) = e−λ λ

k

k! .

Geometric distribution, success probability p ∈ (0, 1). X is supported
on Z and Prob(X = k) = p(1− p)k−1, for k = 1, 2, ....
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Integration

The Lebesgue integral against a σ-finite measure is defined as usual for

1 Simple functions

2 Bounded functions

3 Nonnegative functions

4 General functions
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Integral inequalities

Theorem (Jensen’s inequality)

Let φ be convex on R. If µ is a probability measure, and f and φ(f ) are
integrable then

φ

(∫
fdµ

)
≤
∫
φ(f )dµ.
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Jensen’s inequality

Proof.

Let c =
∫
fdµ and let `(x) = ax + b be a linear function which satisfies

`(c) = φ(c) and φ(x) ≥ `(x). Thus∫
φ(f )dµ ≥

∫
(af + b)dµ = φ

(∫
fdµ

)
.
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Hölder’s inequality

Theorem

If p, q ∈ (1,∞) with 1
p + 1

q = 1, then∫
|fg |dµ ≤ ‖f ‖p‖g‖q.
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Hölder’s inequality

Proof.

We may assume that ‖f ‖p > 0 and ‖g‖q > 0, since otherwise both sides
vanish. Dividing both sides by ‖f ‖p‖g‖q, we may assume that
‖f ‖p = ‖g‖q = 1.
For fixed y ≥ 0,

φ(x) =
xp

p
+

yq

q
− xy

has a minimum in x ≥ 0 at x0 = y
1

p−1 and xp0 = y
p

p−1 = yq, so φ(x0) = 0.

Thus xy ≤ xp

p + yq

q in x , y ≥ 0. The claim follows by setting x = |f |,
y = |g | and integrating.
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Bounded convergence theorem

Definition

We say that fn → f in measure if, for any ε > 0,

µ({x : |fn(x)− f (x)| > ε})→ 0

as n→∞.

Theorem (Bounded convergence theorem)

Let E be a set with µ(E ) <∞. Suppose fn vanishes on E c , |fn(x)| ≤ M,
and fn → f in measure. Then∫

fdµ = lim
n→∞

∫
fndµ.

Bob Hough Math 639: Lecture 1 January 24, 2017 37 / 54



Bounded convergence theorem

Proof.

Let ε > 0, Gn = {x : |fn(x)− f (x)| < ε} and Bn = E − Gn. Thus∣∣∣∣∫ fdµ−
∫

fndµ

∣∣∣∣ ≤ ∫ |f − fn|dµ

=

∫
Gn

|f − fn|dµ+

∫
Bn

|f − fn|dµ

≤ εµ(E ) + 2Mµ(Bn).

Since fn → f in measure, µ(Bn)→ 0. The proof follows on letting
ε ↓ 0.
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Fatou’s lemma

Lemma (Fatou’s lemma)

If fn ≥ 0 then

lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf
n→∞

fn
)
dµ.
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Fatou’s lemma

Proof.

Let gn(x) = infm≥n fm(x), and note that

gn(x) ↑ g(x) = lim inf
n→∞

fn(x).

It suffices to verify that limn→∞
∫
gndµ ≥

∫
gdµ. To do so, let Em ↑ Ω be

sets of finite measure. For each fixed m, as n→∞,∫
gndµ ≥

∫
Em

gn ∧mdµ→
∫
Em

g ∧mdµ.

Letting m→∞ proves the result.

Bob Hough Math 639: Lecture 1 January 24, 2017 40 / 54



Monotone convergence theorem

Theorem (Monotone convergence theorem)

If fn ≥ 0 and fn ↑ f then ∫
fndµ ↑

∫
fdµ.

Bob Hough Math 639: Lecture 1 January 24, 2017 41 / 54



Monotone convergence theorem

Proof.

By Fatou’s lemma, limn→∞
∫
fndµ ≥

∫
fdµ. The reverse inequality is

immediate.
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Dominated convergence theorem

Theorem (Dominated convergence theorem)

If fn → f a.e., |fn| ≤ g for all n and g is integrable, then
∫
fndµ→

∫
fdµ.
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Dominated convergence theorem

Proof.

Since fn + g ≥ 0, Fatou’s lemma gives

lim inf
n→∞

∫
(fn + g)dµ ≥

∫
(f + g)dµ.

Thus lim infn→∞
∫
fndµ ≥

∫
fdµ. To prove the limit, replace fn with

−fn.

Bob Hough Math 639: Lecture 1 January 24, 2017 44 / 54



Expected value

Definition

Let X be a random variable on (Ω,F ,Prob), and write X = X+ + X− in
a positive and negative part.
The expected value of X+ is E[X+] =

∫
X+dP, similarly X−. If either

E[X+] or E[X−] is finite we say E[X ] exists and its value is

E[X ] = E[X+] + E[X−].

E[X ] is also called the mean, µ.
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Expected value

Theorem

Suppose Xn → X a.s. Let g and h be continuous functions on R satisfying

g ≥ 0 and g(x)→∞ as |x | → ∞
|h(x)|/g(x)→ 0 as |x | → ∞
There exists K ≥ 0 such that E[g(Xn)] ≤ K for all n.

Then E[h(Xn)]→ E[h(X )] as n→∞.

A common application of this theorem takes h(x) = x and g(x) = |x |p for
some p > 1.
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Expected value

Proof.

The proof method is an example of truncation.

Assume w.l.o.g. that h(0) = 0.

Let M > 0 be such that Prob(X = M) = 0 and g(x) > 0 for |x | > M.

Define Y = Y 1(|Y |≤M). By bounded convergence,

E[h(X n)]→ E[h(X )].
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Expected value

Proof.

Use ∣∣E[h(Y )]− E[h(Y )]
∣∣ ≤ E[|h(Y )− h(Y )|]

= E[|h(Y )|1(|Y |>M)] ≤ εM E[g(Y )]

where εM = sup{ |h(x)|g(x) : |x | > M}.

Thus |E[h(Xn)]− E [h(Xn)]| ≤ KεM . Also,

E[g(X )] ≤ lim inf
n→∞

E[g(Xn)] ≤ K

so |E[h(X )]− E[h(X )]| ≤ KεM .
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Expected value

Proof.

It follows from the triangle inequality that

|E[h(Xn)]− E[h(X )]| ≤ 2KεM + |E[h(X n)]− E[h(X )]|.

Letting first n, then m tend to infinity proves the claim.
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Change of variable formula

Theorem

Let X be a random element of (S ,S ) with distribution µ, that is,
µ(A) = Prob(X ∈ A). If f is measurable from (S ,S )→ (R,B) and is
such that f ≥ 0 or E [|f (X )|] <∞, then

E[f (X )] =

∫
S
f (y)µ(dy).
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Change of variable formula

Proof.

If B ∈ S and f = 1B then

E[1B(X )] = Prob(X ∈ B) = µ(B) =

∫
S
1B(y)µ(dy).

The equality thus holds for simple functions by linearity.

The equality holds for non-negative functions f by taking a sequence
of simple functions fn ↑ f and applying monotone convergence.

The equality holds for general f by linearity again.
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Variance

Definition

Let X be a random variable which is square integrable. The variance of X
is

Var(X ) = E
[
X 2
]
− E [X ]2

and the standard deviation is σ = Var(X )
1
2 .
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Markov’s inequality

Theorem

Let X ≥ 0 be a non-negative random variable with finite mean µ. Then
for all λ ≥ 1,

Prob(X > λµ) ≤ 1

λ
.

Proof.

The result holds if µ = 0, so assume otherwise. Write

λµProb(X > λµ) ≤ E
[
X1(X>λµ)

]
≤ E[X ] = µ

to conclude.
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Chebyshev’s inequality

Theorem

Let X be a square-integrable random variable with mean µ and standard
deviation σ. Then for all λ ≥ 1,

Prob(|X − µ| > λσ) ≤ 1

λ2
.

Proof.

Apply Markov’s inequality to (X − µ)2.
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