MATH 533, SPRING 2022, HW8

DUE APRIL 4

Problem 1. A distribution F is called harmonic if $\sum_{1}^{n} \partial_{j}^{2} F = 0$. If F is harmonic and tempered, prove that F is a polynomial.

Problem 2. Let f be a continuous function on $\mathbb{R}^n \setminus \{0\}$ which is homogeneous of degree -n, $f(rx) = r^{-n}f(x)$ for r > 0, and has mean 0 on the unit sphere. Show that f is not locally integrable near 0 unless f = 0, but f defines a tempered distribution PV(f) by

$$\langle PV(f), \phi \rangle = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} f(x)\phi(x)dx.$$

The limit equals

$$\int_{|x| \le 1} f(x) [\phi(x) - \phi(0)] dx + \int_{|x| > 1} f(x) \phi(x) dx,$$

and these integrals converge absolutely.

Problem 3. On \mathbb{R} , let $F = PV((\pi x)^{-1})$. Check that

- $(1) \hat{F}(\xi) = -i\operatorname{sgn}\xi.$
- (2) The map $\phi \to F * \phi$, initially defined on Schwartz functions, extends to a unitary operator on L^2 .

This is called the Hilbert transform.

Problem 4. Give $C^{\infty}(\mathbb{T}^n)$ the Fréchet space topology defined by the seminorms $\|\phi\|_{(\alpha)} = \|\partial^{\alpha}\phi\|_{\infty}$. The space $\mathcal{D}'(\mathbb{T}^n)$ of distributions on \mathbb{T}^n is the space of continuous linear functionals on $C^{\infty}(\mathbb{T}^n)$, with the weak * topology. Prove the following.

(1) Distributions on \mathbb{T}^n can be translated, differentiated, and multiplied by C^{∞} functions, just as on \mathbb{R}^n .

2 DUE APRIL 4

- (2) If $F \in \mathcal{D}'(\mathbb{T}^n)$, its Fourier transform is the function \hat{F} on \mathbb{Z}^n defined by $\hat{F}(\kappa) = \langle F, E_{\kappa} \rangle$ where $E_{\kappa}(x) = e^{-2\pi i \kappa \cdot x}$. Prove that a function g on \mathbb{Z}^n is the Fourier transform of a distribution on \mathbb{T}^n iff $|g(\kappa)| \leq C(1+|\kappa|)^N$ for some C, N > 0.
- (3) If $F \in \mathcal{D}'(\mathbb{T}^n)$ and $\phi \in C^{\infty}(\mathbb{T}^n)$, prove $\langle F, \overline{\phi} \rangle = \sum_{\kappa} \hat{F}(\kappa) \overline{\hat{\phi}(\kappa)}$.

Problem 5. If $k \in \mathbb{N}$, H_k is the space of L^2 functions whose L^2 derivatives up to order k exist. Show that these strong derivatives coincide with the distribution derivatives.