MATH 533, SPRING 2020 MIDTERM

Each problem is worth 10 points.

Date: March 11, 2020.

Problem 1.

- a. State and prove Bessel's inequality for a Hilbert space \mathcal{H} .
- b. Using Bessel's inequality, or otherwise, prove that if \mathcal{H} has a countable orthonormal basis, then any orthonormal basis of \mathcal{H} is countable.

Solution.

a. Let $\{u_{\alpha}\}_{\alpha \in A}$ be an orthonormal set in \mathcal{H} . For any $x \in \mathcal{H}$,

$$||x||^2 \ge \sum_{\alpha \in A} |\langle x, u_\alpha \rangle|^2.$$

To prove this, calculate for any finite set $S \subset A$,

$$0 \le \left\| x - \sum_{\alpha \in S} \langle x, u_{\alpha} \rangle u_{\alpha} \right\|^{2}$$
$$= \|x\|^{2} - \sum_{\alpha \in S} |\langle x, u_{\alpha} \rangle|^{2}.$$

In particular, for any x, the set of u_{α} with non-zero inner product with x is countable.

b. Let $\{u_n\}_{n\in\mathbb{N}}$ be a countable orthonormal basis of \mathcal{H} and let $\{v_\alpha\}_{\alpha\in A}$ be another orthonormal basis. For each $n \in \mathbb{N}$, let $A_n = \{\alpha \in A : \langle v_\alpha, u_n \rangle \neq 0\}$, which is a countable set. By completeness of $\{u_n\}_{n\in\mathbb{N}}$, $A \subset \bigcup_n A_n$, which is countable.

Problem 2.

- a. Let \mathcal{X} be an infinite dimensional normed vector space. Prove that the unit ball $B_1 = \{x \in \mathcal{X} : ||x|| \le 1\}$ is not compact in the norm topology.
- b. Prove Alaoglu's Theorem: Let $\mathcal X$ be a Banach space. Prove that the unit ball in $\mathcal X^*$

$$B_1 = \{\ell \in \mathcal{X}^* : \|\ell\| \le 1\}$$

is compact in the weak-* topology. (Hint: identify B_1 with a subset of $\prod_{x \in \mathcal{X}} [-\|x\|, \|x\|]$.)

Solution.

- a. Form a sequence of unit vectors $x_1, x_2, ...$ as follows. Let x_1 be arbitrary. Having chosen $x_1, ..., x_n$, note that the span V_n of $x_1, ..., x_n$ is a closed subspace. Let $y \notin V_n$, and let $\delta = \inf_{x \in V_n} ||y - x|| > 0$. Choose $x \in V_n$ such that $||y - x|| < 2\delta$ and set $x_{n+1} = \frac{y-x}{||y-x||}$. The sequence constructed satisfies, for m > n, the distance of x_m from V_n is at least $\frac{1}{2}$. It follows that no subsequence of $\{x_n\}$ is Cauchy, so B_1 is not compact.
- b. (This applies to real Banach spaces, the modification for complex Banach spaces is straightforward.) Since $\|\ell\| \leq 1$, $|\ell(x)| \leq \|x\|$ and hence the map $\ell \mapsto \prod_{x \in \mathcal{X}} \ell(x)$ is an injection of B_1 into $\prod_{x \in \mathcal{X}} [-\|x\|, \|x\|]$, since \mathcal{X}^* separates points. Furthermore, both the weak-* topology on \mathcal{X}^* and the product topology correspond with the topology of pointwise convergence. Since $\prod_{x \in \mathcal{X}} [-\|x\|, \|x\|]$ is compact in the product topology by Tychonoff's theorem, it suffices to prove that the image of B_1 is a closed. Let $< \ell_{\alpha} >$ be a net in the image of B_1 converging to ℓ . For any $x, y \in \mathcal{X}$ and scalars a, b,

$$\ell(ax + by) = \lim \ell_{\alpha}(ax + by) = \lim a\ell_{\alpha}(x) + b\ell_{\alpha}(y) = a\ell(x) + b\ell(y).$$

Thus ℓ is linear and hence in the image of B_1 .

Problem 3. Define the following sequence spaces of sequences of real numbers.

- For $p \ge 1$, $\ell_p = \{a = \{a_n\}_{n=1}^{\infty} : ||a||_p^p = \sum_n |a_n|^p\}$ $\ell_{\infty} = \{a = \{a_n\}_{n=1}^{\infty} : ||a||_{\infty} = \sup_n |a_n|\}$
- $c_0 = \{a = \{a_n\} : \lim_n a_n = 0, \|a\|_{\infty} = \sup_n |a_n|\}.$
- a. Prove that ℓ_p is separable, but ℓ_{∞} is not.
- b. Prove $c_0^* = \ell_1, \ \ell_1^* = \ell_\infty$ but $\ell_\infty^* \neq \ell_1$ by using Hahn-Banach. Give an example of a sequence in ℓ_1 which does not converge weakly, but converges weak-*.

Solution.

- a. Let e_n be the *n*th standard basis vector. Let V be the rational linear span of $\{e_n\}_{n\in\mathbb{N}}$, that is, finite rational linear combinations of the e_i . This set is countable. To check that it is dense in ℓ_p , given $a \in \ell_p$ and $\epsilon > 0$, first approximate a with a' having finitely many non-zero entries, with $||a - a'||_p < \frac{\epsilon}{2}$. Then find a'' with finitely many rational entries such that $||a' - a''||_p^{\tilde{\epsilon}} < \frac{\epsilon}{2}$. Then $||a - a''||_p < \epsilon$. To check that ℓ_{∞} is not separable, note that there are uncountably many 0-1 sequences, each of norm 1, and any two such sequences have ℓ_{∞} distance 1. Any element of ℓ_{∞} can have distance less than $\frac{1}{2}$ to at most one of these.
- b. Given $a \in \ell_1$ and $b \in c_0$, let

$$(b,a) = \sum_{n} a_{n}b_{n}, \qquad |(b,a)| \le ||b||_{\infty} ||a||_{1}.$$

Choosing a sequence $\{b^n\}$ from c_0 with $b_m^n = \operatorname{sgn}(a_m)$ if $m \le n, b_m^n = 0$ if m > n obtains a sequence of c_0 of norm 1 with $(b^n, a) \to ||a||_1$. It follows that the norm of a as a linear functional is $||a||_1$, which embeds $\ell_1 \subset c_0^*$ isometrically. To prove that this is the whole space, given $\ell \in c_0^*$, let $a_n = (e_n, \ell)$, where e_n is the *n*th standard basis vector. By continuity, $(b, \ell) = \sum_{n} b_n a_n$. Choosing the sequence $\{b^n\}$ as before guarantees that $\sum |a_n| < \infty$ which identifies ℓ with an element of ℓ_1 .

To check $\ell_1^* = \ell_\infty$, given $a \in \ell_\infty$, $b \in \ell_1$, define

$$(b,a) = \sum_{n} a_{n}b_{n}, \qquad |(b,a)| \le ||a||_{\infty} ||b||_{1}.$$

The norm is achieved by selecting n such that $|a_n| = ||a||_{\infty}$ and choosing $b = \pm e_n$. This embeds $\ell_{\infty} \subset \ell_1^*$ isometrically. Given any $\ell \in \ell_1^*$, define $a_n = (e_n, \ell)$. By continuity, $(b, \ell) = \sum_n a_n b_n$. Furthermore, $|a_n| \leq ||\ell||$ so $a \in \ell_{\infty}$.

To check that $\ell_{\infty}^* \neq \ell_1$, note that ℓ_1 is separable, whereas ℓ_{∞} is not. When the dual space of a Banach space \mathcal{X} is separable, so is \mathcal{X} . To prove this using Hahn-Banach instead, suppose for contradiction that $\ell_{\infty}^* = \ell_1$. By identifying ℓ_{∞} with ℓ_1^* we may assume that the pairing between ℓ_1 and ℓ_{∞} is the usual one, which now identifies ℓ_1 with c_0^* . Extend linear functionals on c_0 to those on sequences with a finite limit, and from there to all of ℓ_{∞} , by Hahn-Banach. This is a contradiction, since ℓ_1 is determined by its pairing with c_0 .

The sequence $\{e_n\} \subset \ell_1$ of standard basis vectors converges weak-* to 0, since each element of c_0 has limit 0. However, it does not converge weakly by pairing with $b_n = (-1)^n$ from ℓ_{∞} .

Problem 4. Let $\phi \in C_c^{\infty}(\mathbb{R}^n)$, $\int \phi = 1$, and for real t > 0, let $\phi_t(x) = t^{-n}\phi\left(\frac{x}{t}\right)$. Let $1 \leq p < \infty$ and let $f \in L^p(\mathbb{R}^n)$. Prove that $\phi_t * f \in C^{\infty}(\mathbb{R}^n)$ and $\phi_t * f \to f$ in L^p as $t \downarrow 0$.

Solution. Use $\partial^{\alpha} f * \phi_t = f * \partial^{\alpha} \phi_t$, which is justified by dominated convergence, passing the derivatives under the integral sign. This verifies that $f * \phi_t$ is C^{∞} .

To check the convergence in L^p , write

$$f * \phi_t(x) - f(x) = \int [f(x - y) - f(x)]\phi_t(y)dt.$$

By Minkowski's inequality,

$$||f * \phi_t - f||_p \le \int |\phi_t(y)| ||f^y - f||_p dy = \int |\phi(y)| ||f^{ty} - f||_p dy.$$

This suffices, since ϕ has compact support and $f^{ty} \to f$ in L^p as $t \to 0$.

Problem 5. Let μ be a Radon measure on X. Prove that μ is inner regular on Borel sets of finite measure.

Solution. Let *E* be Borel measurable with $\mu(E) < \infty$. Given $\epsilon > 0$, since μ is outer regular at *E*, choose *U* open, $E \subset U$ with $\mu(U) < \mu(E) + \epsilon$. Since *U* is inner regular, choose *K* compact, $K \subset U$, with $\mu(K) > \mu(U) - \epsilon$. We have $\mu(U \setminus E) < \epsilon$, and hence we can find open $V \supset U \setminus E$ with $\mu(V) < \epsilon$. Let $F = K \setminus V$, which is compact and satisfies $F \subset E$. Then $\mu(F) + \mu(V) \ge \mu(K) \ge \mu(U) - \epsilon \ge \mu(E) - \epsilon$, so $\mu(F) \ge \mu(E) - 2\epsilon$. It follows that $\sup\{\mu(F): F \subset E, \operatorname{compact}\} = \mu(E)$.

Problem 6.

- a. Let \mathcal{X} and \mathcal{Y} be Banach spaces, and let $L(\mathcal{X}, \mathcal{Y})$ be the bounded linear maps between \mathcal{X} and \mathcal{Y} . Give a neighborhood base at 0 for the strong and weak operator topologies.
- b. Let \mathcal{X} and \mathcal{Y} be Banach spaces and let $T_n \in L(\mathcal{X}, \mathcal{Y})$ be such that, for each $x \in \mathcal{X}$, $\{T_n x\}$ is Cauchy. Prove that T_n converges strongly to some $T \in L(\mathcal{X}, \mathcal{Y})$.

Solution.

a. A base for the strong operator topology at 0 is, for $x_1, ..., x_n \in X$ and $\epsilon > 0$,

$$V_{x_1,...,x_n,\epsilon} = \{T : ||Tx_i||_Y < \epsilon\}.$$

A base for the weak operator topology at 0 is, for $x_1, ..., x_n \in X, \ell_1, ..., \ell_m \in Y^*, \epsilon > 0$,

$$U_{x_1,...,x_n,\ell_1,...,\ell_m,\epsilon} = \{T : |(Tx_i,\ell_j)| < \epsilon\}.$$

b. Let, for each $x, Tx = \lim_{n} T_n x$. This definition is evidently linear. To check that it is bounded, note that $||Tx|| = \lim_{n} ||T_nx||$, so $||T_nx||$ is bounded pointwise, and hence $||T_n||$ is bounded by the uniform bounded edness principle. Thus, for any y,

$$||Ty|| = \lim_{n} ||T_ny|| \le (\sup_{n} ||T_n||)||y||.$$

Hence $T \in L(X, Y)$. Since $T_n x \to T x$ for each $x, T_n \to T$ strongly.