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Problem 1.

a. State and prove Bessel’s inequality for a Hilbert space H.
b. Using Bessel’s inequality, or otherwise, prove that if H has a countable

orthonormal basis, then any orthonormal basis of H is countable.

Solution.

a. Let {uα}α∈A be an orthonormal set in H. For any x ∈ H,

‖x‖2 ≥
∑
α∈A

|〈x, uα〉|2.

To prove this, calculate for any finite set S ⊂ A,

0 ≤

∥∥∥∥∥x−∑
α∈S

〈x, uα〉uα

∥∥∥∥∥
2

= ‖x‖2 −
∑
α∈S

|〈x, uα〉|2.

In particular, for any x, the set of uα with non-zero inner product with
x is countable.

b. Let {un}n∈N be a countable orthonormal basis of H and let {vα}α∈A
be another orthonormal basis. For each n ∈ N, let An = {α ∈ A :
〈vα, un〉 6= 0}, which is a countable set. By completeness of {un}n∈N,
A ⊂

⋃
nAn, which is countable.
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Problem 2.

a. Let X be an infinite dimensional normed vector space. Prove that the
unit ball B1 = {x ∈ X : ‖x‖ ≤ 1} is not compact in the norm topology.

b. Prove Alaoglu’s Theorem: Let X be a Banach space. Prove that the
unit ball in X ∗

B1 = {` ∈ X ∗ : ‖`‖ ≤ 1}
is compact in the weak-* topology. (Hint: identify B1 with a subset of∏

x∈X [−‖x‖, ‖x‖].)

Solution.

a. Form a sequence of unit vectors x1, x2, ... as follows. Let x1 be arbitrary.
Having chosen x1, ..., xn, note that the span Vn of x1, ..., xn is a closed
subspace. Let y 6∈ Vn, and let δ = infx∈Vn ‖y − x‖ > 0. Choose x ∈ Vn
such that ‖y−x‖ < 2δ and set xn+1 = y−x

‖y−x‖ . The sequence constructed

satisfies, for m > n, the distance of xm from Vn is at least 1
2 . It follows

that no subsequence of {xn} is Cauchy, so B1 is not compact.
b. (This applies to real Banach spaces, the modification for complex Ba-

nach spaces is straightforward.) Since ‖`‖ ≤ 1, |`(x)| ≤ ‖x‖ and hence
the map ` 7→

∏
x∈X `(x) is an injection of B1 into

∏
x∈X [−‖x‖, ‖x‖],

since X ∗ separates points. Furthermore, both the weak-* topology on
X ∗ and the product topology correspond with the topology of point-
wise convergence. Since

∏
x∈X [−‖x‖, ‖x‖] is compact in the product

topology by Tychonoff’s theorem, it suffices to prove that the image of
B1 is a closed. Let < `α > be a net in the image of B1 converging to `.
For any x, y ∈ X and scalars a, b,

`(ax+ by) = lim `α(ax+ by) = lim a`α(x) + b`α(y) = a`(x) + b`(y).

Thus ` is linear and hence in the image of B1.



4 MATH 533, SPRING 2020 MIDTERM

Problem 3. Define the following sequence spaces of sequences of real num-
bers.

• For p ≥ 1, `p = {a = {an}∞n=1 : ‖a‖pp =
∑

n |an|p}
• `∞ = {a = {an}∞n=1 : ‖a‖∞ = supn |an|}
• c0 = {a = {an} : limn an = 0, ‖a‖∞ = supn |an|}.
a. Prove that `p is separable, but `∞ is not.
b. Prove c∗0 = `1, `

∗
1 = `∞ but `∗∞ 6= `1 by using Hahn-Banach. Give

an example of a sequence in `1 which does not converge weakly, but
converges weak-*.

Solution.
a. Let en be the nth standard basis vector. Let V be the rational linear

span of {en}n∈N, that is, finite rational linear combinations of the ej.
This set is countable. To check that it is dense in `p, given a ∈ `p
and ε > 0, first approximate a with a′ having finitely many non-zero
entries, with ‖a − a′‖p < ε

2 . Then find a′′ with finitely many rational
entries such that ‖a′−a′′‖p < ε

2 . Then ‖a−a′′‖p < ε. To check that `∞
is not separable, note that there are uncountably many 0-1 sequences,
each of norm 1, and any two such sequences have `∞ distance 1. Any
element of `∞ can have distance less than 1

2 to at most one of these.
b. Given a ∈ `1 and b ∈ c0, let

(b, a) =
∑
n

anbn, |(b, a)| ≤ ‖b‖∞‖a‖1.

Choosing a sequence {bn} from c0 with bnm = sgn(am) if m ≤ n, bnm = 0
if m > n obtains a sequence of c0 of norm 1 with (bn, a) → ‖a‖1. It
follows that the norm of a as a linear functional is ‖a‖1, which embeds
`1 ⊂ c∗0 isometrically. To prove that this is the whole space, given
` ∈ c∗0, let an = (en, `), where en is the nth standard basis vector. By
continuity, (b, `) =

∑
n bnan. Choosing the sequence {bn} as before

guarantees that
∑
|an| <∞ which identifies ` with an element of `1.

To check `∗1 = `∞, given a ∈ `∞, b ∈ `1, define

(b, a) =
∑
n

anbn, |(b, a)| ≤ ‖a‖∞‖b‖1.
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The norm is achieved by selecting n such that |an| = ‖a‖∞ and choosing
b = ±en. This embeds `∞ ⊂ `∗1 isometrically. Given any ` ∈ `∗1, define
an = (en, `). By continuity, (b, `) =

∑
n anbn. Furthermore, |an| ≤ ‖`‖

so a ∈ `∞.
To check that `∗∞ 6= `1, note that `1 is separable, whereas `∞ is not.

When the dual space of a Banach space X is separable, so is X . To
prove this using Hahn-Banach instead, suppose for contradiction that
`∗∞ = `1. By identifying `∞ with `∗1 we may assume that the pairing
between `1 and `∞ is the usual one, which now identifies `1 with c∗0.
Extend linear functionals on c0 to those on sequences with a finite limit,
and from there to all of `∞, by Hahn-Banach. This is a contradiction,
since `1 is determined by its pairing with c0.

The sequence {en} ⊂ `1 of standard basis vectors converges weak-*
to 0, since each element of c0 has limit 0. However, it does not converge
weakly by pairing with bn = (−1)n from `∞.
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Problem 4. Let φ ∈ C∞c (Rn),
∫
φ = 1, and for real t > 0, let φt(x) =

t−nφ
(
x
t

)
. Let 1 ≤ p < ∞ and let f ∈ Lp(Rn). Prove that φt ∗ f ∈ C∞(Rn)

and φt ∗ f → f in Lp as t ↓ 0.

Solution. Use ∂αf ∗ φt = f ∗ ∂αφt, which is justified by dominated conver-
gence, passing the derivatives under the integral sign. This verifies that f ∗φt
is C∞.

To check the convergence in Lp, write

f ∗ φt(x)− f(x) =

∫
[f(x− y)− f(x)]φt(y)dt.

By Minkowski’s inequality,

‖f ∗ φt − f‖p ≤
∫
|φt(y)|‖f y − f‖pdy =

∫
|φ(y)|‖f ty − f‖pdy.

This suffices, since φ has compact support and f ty → f in Lp as t→ 0.
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Problem 5. Let µ be a Radon measure on X. Prove that µ is inner regular
on Borel sets of finite measure.

Solution. Let E be Borel measurable with µ(E) < ∞. Given ε > 0, since
µ is outer regular at E, choose U open, E ⊂ U with µ(U) < µ(E) + ε.
Since U is inner regular, choose K compact, K ⊂ U , with µ(K) > µ(U) −
ε. We have µ(U \ E) < ε, and hence we can find open V ⊃ U \ E with
µ(V ) < ε. Let F = K \ V , which is compact and satisfies F ⊂ E. Then
µ(F ) +µ(V ) ≥ µ(K) ≥ µ(U)− ε ≥ µ(E)− ε, so µ(F ) ≥ µ(E)−2ε. It follows
that sup{µ(F ) : F ⊂ E, compact} = µ(E).
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Problem 6.

a. Let X and Y be Banach spaces, and let L(X ,Y) be the bounded linear
maps between X and Y . Give a neighborhood base at 0 for the strong
and weak operator topologies.

b. Let X and Y be Banach spaces and let Tn ∈ L(X ,Y) be such that,
for each x ∈ X , {Tnx} is Cauchy. Prove that Tn converges strongly to
some T ∈ L(X ,Y).

Solution.

a. A base for the strong operator topology at 0 is, for x1, ..., xn ∈ X and
ε > 0,

Vx1,...,xn,ε = {T : ‖Txi‖Y < ε}.
A base for the weak operator topology at 0 is, for x1, ..., xn ∈ X, `1, ..., `m ∈
Y ∗, ε > 0,

Ux1,...,xn,`1,...,`m,ε = {T : |(Txi, `j)| < ε}.
b. Let, for each x, Tx = limn Tnx. This definition is evidently linear. To

check that it is bounded, note that ‖Tx‖ = limn ‖Tnx‖, so ‖Tnx‖ is
bounded pointwise, and hence ‖Tn‖ is bounded by the uniform bound-
edness principle. Thus, for any y,

‖Ty‖ = lim
n
‖Tny‖ ≤ (sup

n
‖Tn‖)‖y‖.

Hence T ∈ L(X, Y ). Since Tnx→ Tx for each x, Tn → T strongly.


