MATH 533, SPRING 2020, HW9

DUE IN CLASS, APRIL 20

Problem 1. Let $G_{t}(x)=(4 \pi t)^{-n / 2} e^{-|x|^{2} / 4 t}$, and if $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, let $u(x, t)=$ $f * G_{t}(x)$. Prove
(1) u satisfies $\left(\partial_{t}-\Delta\right) u=0$ on $\mathbb{R}^{n} \times(0, \infty)$ and $u(\cdot, t) \rightarrow f$ in \mathcal{S}^{\prime} as $t \rightarrow 0$.
(2) If f is a tempered function, then $u(x, t) \rightarrow f(x)$ a.e. as $t \rightarrow 0$.

Problem 2. Let W_{t} be the inverse Fourier transform of $(2 \pi|\xi|)^{-1} \sin (2 \pi|\xi| t)$. Prove the following.
(1) If $n=1, W_{t}=\frac{1}{2} \chi(-t, t)$
(2) If $n=3$, let σ_{R} denote surface measure on the sphere $|x|=R$. Then $\hat{\sigma}_{R}(\xi)=2 R|\xi|^{-1} \sin (2 \pi R|\xi|)$, and hence $W_{t}=(4 \pi t)^{-1} \sigma_{t}$.
(3) If $n=2$, think of $\xi \in \mathbb{R}^{2}$ as an element of $\mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$. Transform the integral

$$
\frac{2 R \sin (2 \pi R|\xi|)}{|\xi|}=\int_{|x|=R} e^{-2 \pi i x \cdot \xi} d \sigma_{R}(x)
$$

as an integral over the disc $D_{R}=\{y:|y| \leq R\}$ in \mathbb{R}^{2}. Conclude that for $n=2$,

$$
W_{t}(x)=(2 \pi)^{-1}\left(t^{2}-|x|^{2}\right)^{-\frac{1}{2}} \chi_{D_{t}}(x)
$$

Problem 3. Solve $\left(\partial_{t}-\partial_{x}^{2}\right) u=0$ on $(a, b) \times(0, \infty)$ with boundary conditions $u(x, 0)=f(x)$ on $(a, b), u(a, t)=u(b, t)=0$ for $t>0$. Solve this again, but with boundary condition $u(a, t)=u(b, t)=0$ replaced by $\partial_{x} u(a, t)=$ $\partial_{x} u(b, t)=0$.

Problem 4. If μ is a positive Borel measure on \mathbb{T}^{1} with $\mu\left(\mathbb{T}^{1}\right)=1$, show that $|\hat{\mu}(k)|<1$ for all $k \neq 0$ unless μ is a convex combination of the point masses at $0, m^{-1}, \ldots,(m-1) m^{-1}$ for some $m \in \mathbb{N}$, in which case $\hat{\mu}(k m)=1$ for all $k \in \mathbb{Z}$.

Problem 5. Show that if $\Delta\left(\mathbb{R}^{n}\right)$ is the set of finite linear combinations of point masses on \mathbb{R}^{n}, then $\Delta\left(\mathbb{R}^{n}\right)$ is vaguely dense in $M\left(\mathbb{R}^{n}\right)$.

