MATH 533, SPRING 2020, HW9

DUE IN CLASS, APRIL 20

Problem 1. Let $G_t(x) = (4\pi t)^{-n/2} e^{-|x|^2/4t}$, and if $f \in \mathcal{S}'(\mathbb{R}^n)$, let $u(x,t) = f * G_t(x)$. Prove

- (1) u satisfies $(\partial_t \Delta)u = 0$ on $\mathbb{R}^n \times (0, \infty)$ and $u(\cdot, t) \to f$ in \mathcal{S}' as $t \to 0$.
- (2) If f is a tempered function, then $u(x,t) \to f(x)$ a.e. as $t \to 0$.

Problem 2. Let W_t be the inverse Fourier transform of $(2\pi|\xi|)^{-1}\sin(2\pi|\xi|t)$. Prove the following.

- (1) If n = 1, $W_t = \frac{1}{2}\chi(-t, t)$
- (2) If n = 3, let σ_R denote surface measure on the sphere |x| = R. Then $\hat{\sigma}_R(\xi) = 2R|\xi|^{-1}\sin(2\pi R|\xi|)$, and hence $W_t = (4\pi t)^{-1}\sigma_t$.
- (3) If n = 2, think of $\xi \in \mathbb{R}^2$ as an element of $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$. Transform the integral

$$\frac{2R\sin(2\pi R|\xi|)}{|\xi|} = \int_{|x|=R} e^{-2\pi i x \cdot \xi} d\sigma_R(x)$$

as an integral over the disc $D_R = \{y : |y| \le R\}$ in \mathbb{R}^2 . Conclude that for n = 2,

$$W_t(x) = (2\pi)^{-1} (t^2 - |x|^2)^{-\frac{1}{2}} \chi_{D_t}(x).$$

Problem 3. Solve $(\partial_t - \partial_x^2)u = 0$ on $(a, b) \times (0, \infty)$ with boundary conditions u(x, 0) = f(x) on (a, b), u(a, t) = u(b, t) = 0 for t > 0. Solve this again, but with boundary condition u(a, t) = u(b, t) = 0 replaced by $\partial_x u(a, t) = \partial_x u(b, t) = 0$.

Problem 4. If μ is a positive Borel measure on \mathbb{T}^1 with $\mu(\mathbb{T}^1) = 1$, show that $|\hat{\mu}(k)| < 1$ for all $k \neq 0$ unless μ is a convex combination of the point masses at $0, m^{-1}, ..., (m-1)m^{-1}$ for some $m \in \mathbb{N}$, in which case $\hat{\mu}(km) = 1$ for all $k \in \mathbb{Z}$.

Problem 5. Show that if $\Delta(\mathbb{R}^n)$ is the set of finite linear combinations of point masses on \mathbb{R}^n , then $\Delta(\mathbb{R}^n)$ is vaguely dense in $M(\mathbb{R}^n)$.