MATH 533, SPRING 2020, HW11

DUE IN CLASS, MAY 4

Problem 1. If $X_{n} \rightarrow X$ in probability, then $P_{X_{n}} \rightarrow P_{X}$ vaguely.
Problem 2. Identify \mathbb{T}^{1} with $\{z \in \mathbb{C}:|z|=1\}$.
(1) If X_{1}, \ldots, X_{n} are independent, then $P_{X_{1} X_{2} \cdots X_{n}}=P_{X_{1}} * \cdots * P_{X_{n}}$.
(2) If $\left\{X_{j}\right\}$ is a sequence of independent random variables with common distribution λ, the distribution of $\prod_{1}^{n} X_{j}$ converges vaguely to the uniform distribution on \mathbb{T}^{1} unless X_{1} is supported on a finite subgroup of \mathbb{T}^{1}.
Problem 3. Given $b \in \mathbb{N} \backslash\{1\}$, let $B=\{0,1, \ldots, b-1\}$ and $\Omega=B^{\mathbb{N}}$. Put the discrete topology on B and the product topology on Ω, and let P be the product measure on Ω, where each P_{n} is b^{-1} times counting measure on B. Let $\left\{X_{n}\right\}_{1}^{\infty}$ be the coordinate functions on Ω. Then if $A_{1}, \ldots, A_{n} \subset B$,

$$
\operatorname{Prob}\left(\bigcap_{1}^{n} X_{j}^{-1}\left(A_{j}\right)\right)=b^{-n} \prod_{1}^{n}\left|A_{j}\right|
$$

and $P(\{\omega\})=0$ for all $\omega \in \Omega$.
Problem 4. Prove the following. Let

$$
\Omega^{\prime}=\left\{\omega \in \Omega: X_{n}(\omega) \neq 0 \text { for infinitely many } n\right\} .
$$

Then $\Omega \backslash \Omega^{\prime}$ is countable and $P\left(\Omega^{\prime}\right)=1$. Define $F: \Omega \rightarrow[0,1]$ by $F(\omega)=$ $\sum_{1}^{\infty} X_{n}(\omega) b^{-n}$. Then $\left.F\right|_{\Omega^{\prime}}$ is a bijection from Ω^{\prime} to $(0,1]$ which maps $\mathcal{B}_{\Omega^{\prime}}$ bijectively onto $\mathcal{B}_{(0,1]}$.
Problem 5. (Borel's normal number theorem) A number $x \in(0,1]$ is called normal in base b if the digits $0,1, \ldots, b-1$ occur with equal frequency in its base b decimal expansion, that is, if $n^{-1} X_{j}^{-1}\left(F^{-1}(x)\right) \rightarrow b^{-1}$ as $n \rightarrow \infty$. Almost every $x \in(0,1]$ (with respect to Lebesgue measure) is normal in base b for every b.

