MATH 533, SPRING 2020, HW10

Problem 1. If $0<p<1$, let $\beta_{p}=p \delta_{1}+(1-p) \delta_{0}$, and let $\beta_{p}^{(n)}$ be the nth convolution power of β_{p},

$$
\beta_{p}^{(n)}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \delta_{k} .
$$

If $a>0$, let

$$
\lambda_{a}=e^{-a} \sum_{0}^{\infty} \frac{a^{k}}{k!} \delta_{k} .
$$

λ_{a} is called the Poisson distribution with parameter a. Prove the following.
(1) The mean and variance of λ_{a} are both a.
(2) $\lambda_{a} * \lambda_{b}=\lambda_{a+b}$.
(3) $\beta_{a / n}^{(n)}$ converges vaguely to λ_{a} as $n \rightarrow \infty$.

Problem 2. If $\sum_{1}^{\infty} n^{-2} \sigma_{n}^{2}<\infty$, then $\lim n^{-2} \sum_{1}^{n} \sigma_{j}^{2}=0$. If $\left\{a_{n}\right\} \subset \mathbb{C}$ and $\lim a_{n}=a$, then $\lim n^{-1} \sum_{1}^{n} a_{j}=a$.
Problem 3. If $\left\{X_{n}\right\}$ is a sequence of independent random variables such that $\mathbf{E}\left(X_{n}\right)=0$ and $\sum_{1}^{\infty} \sigma^{2}\left(X_{n}\right)<\infty$, then $\sum_{1}^{\infty} X_{n}$ converges almost surely.
Problem 4. If $\left\{X_{n}\right\}$ is a sequence of i.i.d. random variables which are not in L^{1}, then $\lim \sup n^{-1}\left|\sum_{1}^{n} X_{j}\right|=\infty$ almost surely.

Problem 5. (Shannon's Theorem) Let $\left\{X_{i}\right\}$ be a sequence of independent random variables on the sample space Ω having the common distribution $\lambda=\sum_{1}^{r} p_{j} \delta_{j}$ where $0<p_{j}<1, \sum_{1}^{r} p_{j}=1$, and δ_{j} is the point mass at j. Define random variables Y_{1}, Y_{2}, \ldots on Ω by

$$
Y_{n}(\omega)=P\left(\left\{\omega^{\prime}: X_{j}\left(\omega^{\prime}\right)=X_{j}(\omega) \text { for } 1 \leq j \leq n\right\}\right) .
$$

Prove the following.
(1) $Y_{n}=\prod_{1}^{n} p_{X_{j}}$.
(2) $n^{-1} \log Y_{n} \rightarrow \sum_{1}^{r} p_{j} \log p_{j}$ almost surely.

