
MATH 322, SPRING 2019 FINAL EXAM

MAY 14

Solve problems 1 and 2, and four of problems 3-8. Each problem is worth 25
points.
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Problem 1. Let ω = ln(x2 + y2 + z2)dx ∧ dy + (x2 + y2 + z2)dx ∧ dz +
ex

2+y2+z2dy ∧ dz. Calculate dω.

Solution. We have

dω =
∂

∂z
(ln(x2 + y2 + z2))dz ∧ dx ∧ dy +

∂

∂y
(x2 + y2 + z2)dy ∧ dx ∧ dz

+
∂

∂x
(ex

2+y2+z2)dx ∧ dy ∧ dz

=

(
2z

x2 + y2 + z2
− 2y + 2xex

2+y2+z2
)
dx ∧ dy ∧ dz.
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Problem 2. Let α : R→ Rn be given by α(t) =


t
t2
...
tn

. Let ω =
∑n

i=1 xidxi.

Calculate α∗ω.

Solution. We have

α∗ω = α∗

(
n∑
i=1

xidxi

)

=
n∑
i=1

αi(t)dαi(t)

=
n∑
i=1

ti(iti−1)dt

=
n∑
i=1

it2i−1dt.
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Problem 3. Let M be a compact oriented n manifold with boundary in Rn

given the usual orientation. Let Θn = 1
n

∑n
i=1(−1)i−1xidx1∧· · ·∧d̂xi∧· · · dxn,

where the hat indicates that index i term is omitted. Prove that∫
∂M

Θn = Vol(M).

Let θn = 1
‖x‖nΘn on Rn \ {0}. Prove that θn is closed but not exact.

Solution. We have

dΘn =
1

n

n∑
i=1

(−1)i−1dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn

= dx1 ∧ · · · ∧ dxn.

Hence the first claim follows by Stokes’ Theorem.

Write θn = 1
‖x‖n ∧ Θn so that dθn = d

(
1
‖x‖n

)
∧ Θn + 1

‖x‖ndΘn. Since ‖x‖ =(∑n
i=1 x

2
i

) 1
2 ,

d

(
1

(x21 + · · ·+ x2n)
n
2

)
= − n

‖x‖n+2

n∑
i=1

xidxi.

It follows that

d

(
1

(x21 + · · ·+ x2n)
n
2

)
∧Θn

= − 1

‖x‖n+2

n∑
i=1

(−1)i−1x2idxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · dxn

= − 1

‖x‖n
dx1 ∧ · · · ∧ dxn.

Hence dθn = 0 and θn is closed. To prove that θn is not exact, let Sn−1 =
{x ∈ Rn : ‖x‖ = 1} be the n− 1 sphere and consider∫

Sn−1

θn =

∫
Sn−1

Θn.
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By the previous part, this is the volume of the unit ball in Rn. This shows that
θn is not exact, since, otherwise, if θn = dωn, then

∫
Sn−1 θn =

∫
∂Sn−1 ωn = 0

since ∂Sn−1 is empty.
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Problem 4. Given linearly independent vectors v1, ..., vn−1 in Rn, let X be
the n×(n−1) matrix with columns v1, ..., vn−1 and letXi be the (n−1)×(n−1)
matrix obtained by omitting row i. Prove that

n =
1√

detX tX

n∑
i=1

(−1)i−1(detXi)ei

is the unit vector normal to the span of v1, ..., vn−1 which makes n, v1, ..., vn
a right handed frame. Hence conclude that the unit normal vector field of an
oriented n− 1 manifold in Rn is continuous.

Solution. Let x =


x1
x2
...
xn

 ∈ Rn and expand by the first column to find

det
(
x, v1, · · · , vn−1

)
=

n∑
i=1

xi(−1)i−1 detXi

= x ·

(
n∑
i=1

(−1)i−1(detXi)ei

)
.

It follows that the determinant is proportional to the component of x in the
direction n, and hence that this vector is orthogonal to the span of v1, ..., vn−1.
Since, by Cauchy-Schwarz from lecture,

V (X)2 = det(X tX) =
n∑
i=1

(detXi)
2,

n is a unit vector. Furthermore,

det
(
n, v1, · · · , vn−1

)
= V (X) > 0

so the frame is right handed.
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Problem 5. Given a differential k form ω and a vector n, define the contrac-
tion of ω by n to be the k − 1 form n¬ω given by

n¬ω(v1, ..., vk−1) = ω(n, v1, ..., vk−1).

If n = c1e1 + · · ·+ cnen calculate n¬dx1 ∧ · · · ∧ dxn.

Solution. We have, for i1 < i2 < · · · < in−1 = (1, 2, ..., ĵ, ..., n)

x1 ∧ · · · ∧ xn

(
n∑
i=1

ciei, ei1, · · · , ein−1

)
= cjx1 ∧ · · · ∧ xn(ej, e1, e2, · · · , êj, · · · , en)
= (−1)j−1cj.

Hence,

n¬dx1 ∧ · · · ∧ dxn =
n∑
j=1

(−1)j−1cjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn.
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Problem 6. Let ω = (x2 + y2)dx ∧ dy + exdx ∧ dz + eydy ∧ dz. Prove that
dω = 0 and find θ such that dθ = ω. Then calculate∫

H

ω

where H is the upper hemisphere x2+y2+z2 = 1, z ≥ 0 oriented with upward
pointing unit normal.

Solution. Let θ = −y3
3 dx + x3

3 dy + (ex + ey)dz. Then dθ = −y2dy ∧ dx +
x2dx ∧ dy + exdx ∧ dz + eydy ∧ dz = ω. Since ω is exact, it is closed.

Let D be the disc {x2 + y2 ≤ 1, z = 0} oriented by upward pointing unit
normal. Then H −D = ∂M where M is the enclosed volume. Since dω = 0,∫
M dω = 0 =

∫
H ω −

∫
D ω, so it suffices to calculate

∫
D ω. Here dz vanishes,

so ∫
H

ω =

∫
x2+y2≤1

(x2 + y2)dx ∧ dy =

∫ 2π

0

∫ 1

0

r3drdθ =
π

2
.
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Problem 7. Let σ be a C∞ function of compact support on R,
∫
R σ = 1, and

define for t > 0, σt(x) = tσ(xt). Let f be continuous, of compact support on
R. Define the convolution f ∗ σ(x) =

∫
y f(y)σ(x− y). Prove that

d

dx
(f ∗ σ)(x) = f ∗ σ′(x)

and hence that f ∗ σ is C∞. Furthermore, prove

lim
t→∞

sup
x∈R
|f(x)− f ∗ σt(x)| = 0

and hence that f may be approximated uniformly by C∞ functions.

Solution. We have
f ∗ σ(x+ δ)− f ∗ σ(x)

δ
− f ∗ σ′(x)

=

∫
y

f(y)

[
σ(x+ δ − y)− σ(x− y)

δ
− σ′(x− y)

]
dy.

By Taylor’s theorem,
∣∣∣σ(x+δ−y)−σ(x−y)δ − σ′(x− y)

∣∣∣ ≤ δ
2‖σ

′′‖∞. Since f is

bounded on a compact interval, the limit as δ → 0 is 0, which proves the
first claim. It follows that by taking repeated derivatives this way, f ∗ σ is
C∞.

To prove the latter claim, write, using that
∫∞
−∞ σt(y)dy = 1,

f ∗ σt(x)− f(x) =

∫ ∞
−∞

(f(x− y)− f(x))σt(y)dy.

and, hence, by the triangle inequality,

|f ∗ σt(x)− f(x)| ≤
∫ ∞
−∞
|f(x− y)− f(x)|σt(y)dy

≤ sup{|f(x− y)− f(x)| : y ∈ suppσt}.
Since f is continuous on a compact set, it is uniformly continuous there. The
claim now follows, since the support of σt tends to 0 as t→∞.
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Problem 8. Let M1 be a compact oriented k manifold without boundary in
Rm and M2 a compact oriented ` manifold without boundary in Rn. Prove
that M1 × M2 = {(x, y) : x ∈ M1, y ∈ M2} is a compact oriented k + `
manifold without boundary in Rn+m, given the orientation of the product
coordinates charts.

Let π1 : Rm+n → Rm be projection to the first m coordinates and π2 :
Rm+n → Rn be projection to the last n coordinates. Let ω be a k form
defined on an open set containing M1 and η be an ` form defined on an open
set containing M2. Prove that∫

M1×M2

π∗1ω ∧ π∗2η =

∫
M1

ω

∫
M2

η.

Solution. Let α : U1 → V1 be a coordinate chart of M1 and β : U2 → V2 be a
coordinate chart of M2, so that U1 is open in Rk and U2 is open in R`. Then
α× β : U1 × U2 → V1 × V2 maps an open set of Rk+` to M1 ×M2. Since

D(α× β) =

(
Dα 0
0 Dβ

)
,

D(α × β) has rank k + `. Also, α × β has the minimum regularity of α and
β. Continuity of the inverse function follows from (α × β)−1 = α−1 × β−1.
Thus α × β is a coordinate chart, and the collection of charts covering M1

times those covering M2 cover M1×M2. If α1 and α2 overlap positively with
transition function gα1,α2

and β1 and β2 overlap positively with transition
function gβ1,β2, then α1×β1 and α2×β2 have transition function gα1,α2

×gβ1,β2,
and

detD(gα1,α2
× gβ1,β2) = detDgα1,α2

× detDgβ1,β2 > 0.

Thus M1 ×M2 is oriented. Since M1,M2 are closed and bounded, so is their
product, which is compact. The coordinate charts all have open sets in Rk+`,
so M1 ×M2 does not have a boundary. This proves the first set of claims.

Let dx1, ..., dxm be dual to the standard basis vectors in Rm, and dy1, ..., dyn
dual to the standard basis vectors in Rn. By linearity, it suffices to consider
the case that ω and η have support whose intersections with M1,M2 is con-
tained in a single coordinate patch. Also, we may assume that ω = fI(x)dxI
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and η = gJ(y)dyJ . Then π∗1ω ∧ π∗2η = fI(x)gJ(y)dxI ∧ dyJ . Thus

(α× β)∗(π∗1ω ∧ π∗2η) = (fI ◦ α)(gJ ◦ β) det(DαI) det(DβJ)dz

where dz is the volume form on Rk+`. The product claim now follows by
Fubini’s theorem.


