MATH 320, FALL 2022 PRACTICE MIDTERM 2

OCTOBER 27

Each problem is worth 10 points.

Problem 1. Give the proof from lecture that a continuous function on a closed bounded interval attains its maximum and minimum.

Problem 2. Suppose f and g are n times differentiable at a point a. Prove Leibniz's formula

$$
(f g)^{(n)}(a)=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(a) g^{(n-k)}(a) .
$$

Problem 3. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable and let f be twice differentiable at a point $x \in(a, b)$. Prove

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} .
$$

Give an example of a function f for which the limit exists but the function does not have a second derivative at the point.

Problem 4. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be periodic on \mathbb{R} if there exists a number $p>0$ such that $f(x+p)=f(x)$ for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R}.

