MATH 319/320, FALL 2022 MIDTERM 1

SEPTEMBER 22

Each problem is worth 10 points.

Problem 1. Let the power set of a set S be $P(S)=\{A: A \subset S\}$, the set of all subsets of S. Prove by induction that if S has $n \geq 1$ elements, then $P(S)$ has 2^{n} elements.

Solution. Base case $(n=1)$: If $|S|=1$ the power set is $\{\emptyset, S\}$.
Inductive step: Let $n \geq 1$ and assume the claim holds for all sets of size n. Let S be a set of size $n+1$ and let $x \in S$. Split the power set of S into subsets that contain x and subsets that do not. Those that do not form the power set of $S \backslash\{x\}$, and hence there are 2^{n} of these. Those that contain x can be found by appending x to each subset in the power set of $S \backslash\{x\}$, for another 2^{n} subsets. Thus there are 2^{n+1} elements in the power set of S.

Problem 2. Let $K:=\{s+t \sqrt{2}: s, t \in \mathbb{Q}\}$. Show that K satisfies the following
a. If $x_{1}, x_{2} \in K$, then $x_{1}+x_{2} \in K$ and $x_{1} x_{2} \in K$.
b. If $x \neq 0$ and $x \in K$, then $\frac{1}{x} \in K$.

Solution. a. Let $x_{1}=\left(s_{1}+t_{1} \sqrt{2}\right)$ and $x_{2}=\left(s_{2}+t_{2} \sqrt{2}\right), s_{1}, s_{2}, t_{1}, t_{2} \in \mathbb{Q}$. Then $x_{1}+x_{2}=\left(s_{1}+s_{2}\right)+\left(t_{1}+t_{2}\right) \sqrt{2}$ shows $x_{1}+x_{2} \in K$. Also $x_{1} x_{2}=\left(s_{1}+t_{1} \sqrt{2}\right)\left(s_{2}+t_{2} \sqrt{2}\right)=\left(s_{1} s_{2}+2 t_{1} t_{2}\right)+\left(s_{1} t_{2}+s_{2} t_{1}\right) \sqrt{2}$ shows $x_{1} x_{2} \in K$.
b. Let $x=s+t \sqrt{2}$ with not both $s, t=0$. Then $\frac{1}{x}=\frac{s-t \sqrt{2}}{s^{2}-2 t^{2}}$. Notice the denominator does not vanish since 2 is not a square. Since $\frac{s}{s^{2}-2 t^{2}}$ and $\frac{t}{s^{2}-2 t^{2}}$ are both rational, this completes the proof.

Problem 3. Calculate the following limits.
a. Using only the definition of limits, calculate the limit $\lim \frac{4 n^{2}+3}{2 n^{2}+1}$.
b. If $0<a<b$, determine $\lim \left(\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}\right)$. (You do not have to use the definition and you may rely on properties of the limit.)
Solution.
a. Write $\frac{4 n^{2}+3}{2 n^{2}+1}=2+\frac{1}{2 n^{2}+1}$. We show the limit is 2 . We need to show that for $\epsilon>0$ we can find N so that $n>N$ implies $\frac{1}{2 n^{2}+1}<\epsilon$. It suffices to choose $N=\frac{1}{\sqrt{\epsilon}}$, which implies

$$
\left|\frac{4 n^{2}+3}{2 n^{2}+1}-2\right|=\frac{1}{2 n^{2}+1}<\frac{1}{\frac{2}{\epsilon}+1}<\frac{\epsilon}{2} .
$$

b. Write $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=b \frac{1+\left(\frac{a}{b}\right)^{n+1}}{1+\left(\frac{a}{b}\right)^{n}}$. Thus

$$
\lim \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=b \frac{1+\lim \left(\frac{a}{b}\right)^{n+1}}{1+\lim \left(\frac{a}{b}\right)^{n}}=b .
$$

Problem 4. Establish the convergence or divergence of the sequence $\left(y_{n}\right)$ where

$$
y_{n}:=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}, \quad n \in \mathbb{N} .
$$

Solution. We have $y_{n+1}-y_{n}=\frac{1}{2 n+1}+\frac{1}{2 n+2}-\frac{1}{n+1}=\frac{1}{2 n+1}-\frac{1}{2 n+2}>0$. Thus the sequence y_{n} is increasing. It is also bounded above by 1 since each of the n terms in the sum defining y_{n} has size at most $\frac{1}{n+1}$. Thus it converges.

Problem 5. Show that if $x_{n}>0$ for all $n \in \mathbb{N}$, then $\lim x_{n}=0$ if and only if $\lim \frac{1}{x_{n}}=\infty$.
Solution. Suppose $\lim x_{n}=0$. Given $M>0$ choose N so that $n>N$ implies $x_{n}<\frac{1}{M}$ so $\frac{1}{x_{n}}>M$ and this proves $\lim \frac{1}{x_{n}}=\infty$. Conversely if $\lim \frac{1}{x_{n}}=\infty$, given $\epsilon>0$ choose N so that $n>N$ implies $\frac{1}{x_{n}}>\frac{1}{\epsilon}$. Then $0<x_{n}<\epsilon$ and so $\lim x_{n}=0$.

