MATH 319/320, SPRING 2020 MIDTERM 1

FEBRUARY 27

Each problem is worth 10 points.

Problem 1. Let $F_{0}=F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$ be the Fibonacci sequence. Prove that for all natural numbers $n, F_{n} \leq 2^{n}$.

Problem 2. Prove that $x^{2}=3$ does not have a rational solution, but that it has a positive real solution.

Problem 3. Prove that each non-empty interval of \mathbb{R} contains both rational and irrational numbers.

Problem 4. Show that if $z_{n}=\left(a^{n}+b^{n}\right)^{\frac{1}{n}}$ where $0<a<b$, then $\lim \left(z_{n}\right)=b$.

Problem 5. Let $S \subset \mathbb{R}$ be a bounded set and $S_{0} \subset S$ a non-empty subset. Prove

$$
\inf S \leq \inf S_{0} \leq \sup S_{0} \leq \sup S .
$$

