MATH 320, FALL 2017 FINAL EXAM

DECEMBER 15

Each problem is worth 10 points.

Problem 1. Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on an interval $[a, b]$ converging uniformly to a function f on $[a, b]$.
a. (5 points) Prove that f is continuous.
b. (5 points) Prove that $\int_{a}^{b} f_{n}(x) d x \rightarrow \int_{a}^{b} f(x) d x$ as $n \rightarrow \infty$.

Solution.

a. We check continuity of f at $x_{0} \in[a, b]$. Given $\epsilon>0$, let N be such that $n>N$ implies, for all $x \in[a, b],\left|f_{N}(x)-f(x)\right|<\frac{\epsilon}{3}$. Since f_{N+1} is continuous at x_{0}, let $\delta>0$ be such that $x \in[a, b]$ and $\left|x-x_{0}\right|<\delta$ then $\left|f_{N+1}(x)-f_{N+1}\left(x_{0}\right)\right|<\frac{\epsilon}{3}$. It follow that, by the triangle inequality, $\left|f(x)-f\left(x_{0}\right)\right|$
$\leq\left|f(x)-f_{N+1}(x)\right|+\left|f_{N+1}(x)-f_{N+1}\left(x_{0}\right)\right|+\left|f_{N+1}\left(x_{0}\right)-f\left(x_{0}\right)\right|$ $<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$.
b. By part a, f is integrable. Given $\epsilon>0$ let N be such that $n>N$ implies for all $x \in[a, b],\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{b-a}$. Then

$$
\int_{a}^{b} f_{n}(x)-\frac{\epsilon}{b-a} d x<\int_{a}^{b} f(x) d x<\int_{a}^{b} f_{n}(x)+\frac{\epsilon}{b-a} d x
$$

so

$$
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right|<\epsilon,
$$

which proves the limit.

Problem 2.

a. (4 points) State the definition of a real function f differentiable at a point a.
b. (6 points) A function f is Lipschitz with Lipschitz constant M on an interval $[a, b]$ if, for any $x, y \in[a, b]$,

$$
|f(x)-f(y)| \leq M|x-y|
$$

Suppose that f is differentiable on (a, b) and $\left|f^{\prime}(x)\right| \leq M$ for all $x \in$ (a, b). Prove that f is Lipschitz on $[a, b]$ with Lipschitz constant M.

Solution.

a. A function f is differentiable at a point $a \in \mathbb{R}$ if it is defined in an open interval containing a and if the limit $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists and is finite.
b. Given $a \leq x<y \leq b$, the Mean Value Theorem states that there is $z \in(x, y)$ such that

$$
f^{\prime}(z)=\frac{f(y)-f(x)}{y-x}
$$

Hence $|f(y)-f(x)|=|y-x|\left|f^{\prime}(z)\right| \leq M|y-x|$, so f is Lipschitz with constant M.

Problem 3.

a. (4 points) State the integral form of Taylor's theorem with remainder.
b. (6 points) Determine the Taylor series of $\cos x$ about 0 and prove that the degree k Taylor polynomial of $\cos x$ differs from $\cos x$ by at most $\frac{|x|^{k+1}}{(k+1)!}$.

Solution.

a. Let $n \geq 1$ and let f be n times continuously differentiable on the interval (a, b) and let $c, x \in(a, b)$. Then

$$
f(x)=\sum_{j=0}^{n-1} \frac{f^{(j)}(c)(x-c)^{j}}{j!}+\int_{c}^{x} \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) d t .
$$

b. Since $\frac{d}{d x} \cos x=-\sin x$ and $\frac{d}{d x}-\sin x=-\cos x$, the derivatives of $\cos x$ at 0 are given by $\left(\frac{d}{d x}\right)^{n} \cos x$ is 0 if n is odd, 1 if n is divisible by 4 , and -1 if n is even but not divisible by 4 . Hence the Taylor series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

The remainder term from the degree k Taylor polynomial is

$$
R_{k}(x)=\int_{0}^{x} \frac{(x-t)^{k}}{k!}\left(\frac{d}{d t}\right)^{k+1}(\cos t) d t
$$

Since the derivatives of $\cos x$ are bounded in size by 1 , the triangle inequality for integrals implies that

$$
\left|R_{k}(x)\right| \leq \int_{0}^{|x|} \frac{(|x|-t)^{k}}{k!} d t=\frac{|x|^{k+1}}{(k+1)!} .
$$

Problem 4.

a. (5 points) Let f be real valued and increasing on an interval $[a, b]$. Prove that f is integrable on $[a, b]$.
b. (5 points) Suppose f is continuous on $[a, b]$ and that $\int_{a}^{b} f^{2}(x) d x=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.

Solution.

a. Let $N \geq 1$ and take the partition P_{N} which divides $[a, b]$ into N equal segments. Write $L(f, N)$ for the lower Darboux sum and $U(f, N)$ for the upper Darboux sum. Then since f is increasing

$$
\begin{aligned}
& L(f, N)=\frac{b-a}{N} \sum_{j=1}^{N} f\left(a+(j-1) \frac{b-a}{N}\right), \\
& U(f, N)=\frac{b-a}{N} \sum_{j=1}^{N} f\left(a+j \frac{b-a}{N}\right)
\end{aligned}
$$

so

$$
U(f, N)-L(f, N)=\frac{b-a}{N}(f(b)-f(a)) .
$$

It follows that $U(f, N)-L(f, N) \rightarrow 0$ as $N \rightarrow \infty$, so the lower and upper Darboux integrals are equal.
b. Suppose $f\left(x_{0}\right) \neq 0$ for some $x_{0} \in(a, b)$. Then, by continuity, there is $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subset(a, b)$ and $\left|x-x_{0}\right|<\delta$ implies $\left|f(x)-f\left(x_{0}\right)\right|<\frac{\left|f\left(x_{0}\right)\right|}{2}$. From the triangle inequality, it follows that, for $\left|x-x_{0}\right|<\delta$

$$
|f(x)| \geq\left|f\left(x_{0}\right)\right|-\left|f\left(x_{0}\right)-f(x)\right|>\frac{\left|f\left(x_{0}\right)\right|}{2} .
$$

Let $g(x)=\frac{f\left(x_{0}\right)^{2}}{4}$ for $\left|x-x_{0}\right|<\delta, g(x)=0$ otherwise. Then $f(x)^{2}>$ $g(x)$ for all x, and hence

$$
\int_{a}^{b} f(x)^{2} d x>\int_{a}^{b} g(x) d x=2 \delta \frac{f\left(x_{0}\right)^{2}}{4}>0 .
$$

Problem 5. Determine the following limits.
a. (4 points)

$$
\lim _{x \rightarrow \infty} x e^{\frac{x^{2}}{2}} \int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t
$$

b. (6 points)

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1}\left(1+\frac{1}{n}\right)^{j} .
$$

Solution.

a. Bound

$$
\int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t=\int_{0}^{\infty} e^{-\frac{(x+t)^{2}}{2}} d t \leq e^{-\frac{x^{2}}{2}} \int_{0}^{\infty} e^{-t x} d t \leq \frac{1}{x e^{\frac{x^{2}}{2}}}
$$

Thus if the limit is written as

$$
\lim _{x \rightarrow \infty} \frac{\int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t}{\frac{1}{x} e^{-\frac{x^{2}}{2}}}
$$

then the limit is indeterminant of type $\frac{0}{0}$. It follows on applying l'Hospital's rule and the Fundamental Theorem of Calculus that the limit is equal to

$$
\lim _{x \rightarrow \infty} \frac{e^{-\frac{x^{2}}{2}}}{\left(1+\frac{1}{x^{2}}\right) e^{-\frac{x^{2}}{2}}}=1 .
$$

b. The sum is a geometric series, equal to

$$
\frac{\left(1+\frac{1}{n}\right)^{n}-1}{\frac{1}{n}}
$$

and hence the limit is $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}-1$. Calculate

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\exp \left(\lim _{n \rightarrow \infty} n \log \left(1+\frac{1}{n}\right)\right) .
$$

If $f(x)=\log (1+x)$ then since $f(1)=0$, the internal limit is $f^{\prime}(0)=1$. Putting together these calculations obtains

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1}\left(1+\frac{1}{n}\right)^{j}=e-1
$$

Problem 6.

a. (5 points) Determine the Taylor series of $\log (1+x)$ about $x=0$, and determine the radius of convergence.
b. (5 points) Find the degree 4 Taylor polynomial of $\frac{2}{e^{x}+e^{-x}}$ about $x=0$.

Solution.

a. The geometric series $\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ has radius of convergence 1 . Hence, by the theorem on integration of power series,

$$
\log (1+x)=\int_{0}^{x} \frac{d t}{1+t}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}
$$

has radius of convergence 1.
b. Since $\frac{d}{d x} e^{x}=e^{x}$, the Taylor expansion of $f(x)=\frac{e^{x}+e^{-x}}{2}$ about $x=0$ is $1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)$. Let the degree 4 Taylor expansion of $\frac{2}{e^{x}+e^{-x}}$ about $x=0$ be given by

$$
c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+O\left(x^{5}\right)
$$

Note that, since $\frac{1}{f(x)}$ is even, $c_{1}=c_{3}=0$. Calculate formally,

$$
\left(c_{0}+c_{2} x^{2}+c_{4} x^{4}+O\left(x^{5}\right)\right)\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{6}\right)\right)=1+O\left(x^{5}\right)
$$

which implies that $c_{0}=1, c_{2}=-\frac{1}{2}$ and $c_{4}-\frac{1}{4}+\frac{1}{24}=0$ so $c_{4}=\frac{5}{24}$. The rigorous justification of this formal calculation is that $f(x)^{n+1}\left(\frac{d}{d x}\right)^{n} \frac{1}{f(x)}$ is a polynomial in $\left(f(x), f^{\prime}(x), \ldots, f^{(n)}(x)\right)$, so that the answer would be unchanged if $f(x)$ were in fact a polynomial. In this case, $\frac{1}{f(x)}$ may be expanded in partial fractions and it's Taylor expansion has a positive radius of convergence.

