
MATH 320, FALL 2017 FINAL EXAM

DECEMBER 15

Each problem is worth 10 points.
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Problem 1. Let {fn} be a sequence of continuous functions on an interval
[a, b] converging uniformly to a function f on [a, b].

a. (5 points) Prove that f is continuous.

b. (5 points) Prove that
∫ b
a fn(x)dx→

∫ b
a f(x)dx as n→∞.

Solution.

a. We check continuity of f at x0 ∈ [a, b]. Given ε > 0, let N be such
that n > N implies, for all x ∈ [a, b], |fN(x)− f(x)| < ε

3 . Since fN+1 is
continuous at x0, let δ > 0 be such that x ∈ [a, b] and |x−x0| < δ then
|fN+1(x)− fN+1(x0)| < ε

3 . It follow that, by the triangle inequality,

|f(x)− f(x0)|
≤ |f(x)− fN+1(x)|+ |fN+1(x)− fN+1(x0)|+ |fN+1(x0)− f(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

b. By part a, f is integrable. Given ε > 0 let N be such that n > N
implies for all x ∈ [a, b], |fn(x)− f(x)| < ε

b−a . Then∫ b

a

fn(x)− ε

b− a
dx <

∫ b

a

f(x)dx <

∫ b

a

fn(x) +
ε

b− a
dx

so ∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ < ε,

which proves the limit.
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Problem 2.
a. (4 points) State the definition of a real function f differentiable at a

point a.
b. (6 points) A function f is Lipschitz with Lipschitz constant M on an

interval [a, b] if, for any x, y ∈ [a, b],

|f(x)− f(y)| ≤M |x− y|.
Suppose that f is differentiable on (a, b) and |f ′(x)| ≤ M for all x ∈
(a, b). Prove that f is Lipschitz on [a, b] with Lipschitz constant M .

Solution.

a. A function f is differentiable at a point a ∈ R if it is defined in an open

interval containing a and if the limit f ′(a) = limx→a
f(x)−f(a)

x−a exists and
is finite.

b. Given a ≤ x < y ≤ b, the Mean Value Theorem states that there is
z ∈ (x, y) such that

f ′(z) =
f(y)− f(x)

y − x
.

Hence |f(y)− f(x)| = |y− x||f ′(z)| ≤M |y− x|, so f is Lipschitz with
constant M .
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Problem 3.

a. (4 points) State the integral form of Taylor’s theorem with remainder.
b. (6 points) Determine the Taylor series of cos x about 0 and prove that

the degree k Taylor polynomial of cosx differs from cosx by at most
|x|k+1

(k+1)! .

Solution.

a. Let n ≥ 1 and let f be n times continuously differentiable on the
interval (a, b) and let c, x ∈ (a, b). Then

f(x) =
n−1∑
j=0

f (j)(c)(x− c)j

j!
+

∫ x

c

(x− t)n−1

(n− 1)!
f (n)(t)dt.

b. Since d
dx cosx = − sinx and d

dx−sinx = − cosx, the derivatives of cosx

at 0 are given by
(
d
dx

)n
cosx is 0 if n is odd, 1 if n is divisible by 4, and

-1 if n is even but not divisible by 4. Hence the Taylor series is
∞∑
n=0

(−1)nx2n

(2n)!
.

The remainder term from the degree k Taylor polynomial is

Rk(x) =

∫ x

0

(x− t)k

k!

(
d

dt

)k+1

(cos t)dt.

Since the derivatives of cosx are bounded in size by 1, the triangle
inequality for integrals implies that

|Rk(x)| ≤
∫ |x|
0

(|x| − t)k

k!
dt =

|x|k+1

(k + 1)!
.



MATH 320, FALL 2017 FINAL EXAM 5

Problem 4.

a. (5 points) Let f be real valued and increasing on an interval [a, b].
Prove that f is integrable on [a, b].

b. (5 points) Suppose f is continuous on [a, b] and that
∫ b
a f

2(x)dx = 0.
Prove that f(x) = 0 for all x ∈ [a, b].

Solution.

a. Let N ≥ 1 and take the partition PN which divides [a, b] into N equal
segments. Write L(f,N) for the lower Darboux sum and U(f,N) for
the upper Darboux sum. Then since f is increasing

L(f,N) =
b− a
N

N∑
j=1

f

(
a+ (j − 1)

b− a
N

)
,

U(f,N) =
b− a
N

N∑
j=1

f

(
a+ j

b− a
N

)
,

so

U(f,N)− L(f,N) =
b− a
N

(f(b)− f(a)).

It follows that U(f,N) − L(f,N) → 0 as N → ∞, so the lower and
upper Darboux integrals are equal.

b. Suppose f(x0) 6= 0 for some x0 ∈ (a, b). Then, by continuity, there
is δ > 0 such that (x0 − δ, x0 + δ) ⊂ (a, b) and |x − x0| < δ implies

|f(x) − f(x0)| < |f(x0)|
2 . From the triangle inequality, it follows that,

for |x− x0| < δ

|f(x)| ≥ |f(x0)| − |f(x0)− f(x)| > |f(x0)|
2

.

Let g(x) = f(x0)
2

4 for |x − x0| < δ, g(x) = 0 otherwise. Then f(x)2 >
g(x) for all x, and hence∫ b

a

f(x)2dx >

∫ b

a

g(x)dx = 2δ
f(x0)

2

4
> 0.
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Problem 5. Determine the following limits.

a. (4 points)

lim
x→∞

xe
x2

2

∫ ∞
x

e−
t2

2 dt.

b. (6 points)

lim
n→∞

1

n

n−1∑
j=0

(
1 +

1

n

)j
.

Solution.

a. Bound∫ ∞
x

e−
t2

2 dt =

∫ ∞
0

e−
(x+t)2

2 dt ≤ e−
x2

2

∫ ∞
0

e−txdt ≤ 1

xe
x2

2

.

Thus if the limit is written as

lim
x→∞

∫∞
x e−

t2

2 dt

1
xe
−x2

2

then the limit is indeterminant of type 0
0 . It follows on applying

l’Hospital’s rule and the Fundamental Theorem of Calculus that the
limit is equal to

lim
x→∞

e−
x2

2(
1 + 1

x2

)
e−

x2

2

= 1.

b. The sum is a geometric series, equal to(
1 + 1

n

)n − 1
1
n

and hence the limit is limn→∞
(
1 + 1

n

)n − 1. Calculate

lim
n→∞

(
1 +

1

n

)n
= exp

(
lim
n→∞

n log

(
1 +

1

n

))
.
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If f(x) = log(1 +x) then since f(1) = 0, the internal limit is f ′(0) = 1.
Putting together these calculations obtains

lim
n→∞

1

n

n−1∑
j=0

(
1 +

1

n

)j
= e− 1.
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Problem 6.

a. (5 points) Determine the Taylor series of log(1 + x) about x = 0, and
determine the radius of convergence.

b. (5 points) Find the degree 4 Taylor polynomial of 2
ex+e−x about x = 0.

Solution.

a. The geometric series 1
1+x =

∑∞
n=0(−1)nxn has radius of convergence 1.

Hence, by the theorem on integration of power series,

log(1 + x) =

∫ x

0

dt

1 + t
=

∞∑
n=1

(−1)n+1xn

n

has radius of convergence 1.
b. Since d

dxe
x = ex, the Taylor expansion of f(x) = ex+e−x

2 about x = 0 is

1 + x2

2 + x4

24 +O(x6). Let the degree 4 Taylor expansion of 2
ex+e−x about

x = 0 be given by

c0 + c1x+ c2x
2 + c3x

3 + c4x
4 +O(x5).

Note that, since 1
f(x) is even, c1 = c3 = 0. Calculate formally,

(c0 + c2x
2 + c4x

4 +O(x5))

(
1 +

x2

2
+
x4

24
+O(x6)

)
= 1 +O(x5)

which implies that c0 = 1, c2 = −1
2 and c4− 1

4 + 1
24 = 0 so c4 = 5

24 . The

rigorous justification of this formal calculation is that f(x)n+1
(
d
dx

)n 1
f(x)

is a polynomial in (f(x), f ′(x), ..., f (n)(x)), so that the answer would be
unchanged if f(x) were in fact a polynomial. In this case, 1

f(x) may be

expanded in partial fractions and it’s Taylor expansion has a positive
radius of convergence.


