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Each problem is worth 10 points.
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Problem 1.

a. (3 points) Let {an}n∈N be a sequence of real numbers. Define

lim sup
n→∞

an.

b. (7 points) Let {an}n∈N and {bn}n∈N be sequences of real numbers. As-
sume that lim sup an and lim sup bn are finite. Prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Give an example where equality does not hold.

Solution.

a. Define for integer N ≥ 1, sN = sup{an : n ≥ N}. If sN =∞ for all N
then lim supn→∞ an =∞. Otherwise, lim supn→∞ an = limN→∞ sN .

b. For integer N ≥ 1, let

sN = sup{an : n ≥ N}, tN = sup{bn : n ≥ N},
and assume that N is sufficiently large so that both of these suprema
are finite. Since sN is an upper bound for {an : n ≥ N} and tN is
an upper bound for {bn : n ≥ N}, sN + tN is an upper bound for
{an + bn : n ≥ N}, so

rN = sup{an + bn : n ≥ N}
satisfies rN ≤ sN + tN . Hence

lim sup(an + bn) = lim
N→∞

rN

≤ lim
N→∞

(sN + tN) = lim sup an + lim sup bn.

An example in which equality does not hold is

an =

{
1 n odd
0 n even

, bn =

{
0 n odd
1 n even

.

Then lim sup an = lim sup bn = 1, while lim sup(an + bn) = 1.
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Problem 2.

a. (3 points) State the definition of a metric d on a set S.
b. (7 points) Given two points x = (x1, ..., xn) and y = (y1, ..., yn) in Rn,

the `1 and `∞ distances between x and y are

d1(x, y) =
n∑

i=1

|xi − yi|, d∞(x, y) = max{|xi − yi|, i = 1, ..., n}.

Check that the `1 and `∞ distances are metrics on Rn, then check that
a sequence {xk}k∈N of elements of Rn converges in the `1 metric if and
only if it converges in the `∞ metric.

Solution.

a. A metric d is a function d : S × S → R≥0 satisfying
i. For all x ∈ S, d(x, x) = 0, and for all x 6= y in S, d(x, y) > 0.
ii. For all x, y in S, d(x, y) = d(y, x).
iii. The triangle inequality holds: for all x, y, z in S, d(x, z) ≤ d(x, y)+

d(y, z).
b. `1 metric:

i. By non-negativity of the absolute value,

d1(x, y) =
n∑

i=1

|xi − yi| = 0

if and only if xi = yi for all i, that is, if and only if x = y. Otherwise
d1(x, y) > 0.

ii.

d1(x, y) =
n∑

i=1

|xi − yi| =
n∑

i=1

|yi − xi| = d1(y, x).
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iii. By the triangle inequality on R1,

d1(x, z) =
n∑

i=1

|xi − zi|

≤
n∑

i=1

(|xi − yi|+ |yi − zi|) = d1(x, y) + d1(y, z).

`∞ metric:
i. d∞(x, y) = maxi{|xi − yi|} = 0 if and only if |xi − yi| = 0 for all i,

which holds if and only if xi = yi for all i, that is x = y. Otherwise
d∞(x, y) > 0.

ii. Since |xi − yi| = |yi − xi|, d∞(x, y) = d∞(y, x).
iii. In d∞(x, z), let |xi − zi| obtain the maximum. By the triangle

inequality on R1,

d∞(x, z) = |xi − zi|
≤ |xi − yi|+ |yi − zi| ≤ d∞(x, y) + d∞(y, z).

The inequality

d∞(x, y) ≤ d1(x, y) ≤ nd∞(x, y)

implies that limk→∞ d∞(xk, x) = 0 if and only if limk→∞ d1(xk, x) = 0,
so {xk}k∈N converges in d1 if and only if it converges in d∞.
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Problem 3. The binomial coefficients are defined for integers 0 ≤ k ≤ n by(
n
k

)
= n!

k!(n−k)! .

a. (5 points) Decide, with proof, whether the series
∑∞

n=1
1

(2n
n )

converges.

b. (5 points) Prove that
(2n

n )
22n → 0 as n→∞.

[Hint: first check that
(2nn )
22n

= 2n−1
2n ·

2n−3
2n−2 · · · · ·

1
2 .]

Solution.

a. We check that the series converges by the ratio test. For n ≥ 1,(
2n
n

)(
2n+2
n+1

) =
(n+ 1)2

(2n+ 2)(2n+ 1)
→ 1

4
< 1

as n→∞, so that the condition of the ratio test is met.

b. We first check the identity for
(2n

n )
22n by induction.

Base case (n = 1): We have
(2
1)
22 = 1

2 as wanted.
Inductive step: Assume for some n ≥ 1 that(

2n
n

)
22n

=
2n− 1

2n
· 2n− 3

2n− 2
· · · · · 1

2
.

Then (
2n+2
n+1

)
22n+2

=
(2n+ 2)(2n+ 1)

4(n+ 1)2
·
(

2n
n

)
22n

=
2n+ 1

2n+ 2
· 2n− 1

2n
· · · · · 1

2
,

completing the inductive step.
Let, for n ≥ 2,

sn =
2n− 1

2n
· 2n− 3

2n− 2
· · · · · 1

2
=

(
2n
n

)
22n

tn =
2n− 2

2n− 1
· 2n− 4

2n− 3
· · · · · 2

3
.
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Note that the product defining tn has one fewer term than that defining
sn. By comparing term-by-term,

tn > sn >
1

2
tn.

Also, both sequences are bounded below, and decreasing, hence con-
verge to a non-negative limit. Let sn → s, tn → t. Then sntn → st. But
sntn is a telescoping product, equal to 1

2n , so st = 0. The inequalities
imply t ≥ s ≥ t

2 and hence s = t = 0.
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Problem 4. (10 points) Prove that a continuous function on a closed bounded
interval [a, b] is uniformly continuous.

Solution. Suppose for contradiction that f is continuous, but not uniformly
continuous on [a, b]. Let ε > 0 violate the definition of uniform continuity
for f . Hence there are sequences of points {xn}n∈N, {yn}n∈N in [a, b] with
|xn − yn| < 1

n and |f(xn)− f(yn)| ≥ ε. By the Bolzano-Weierstrass Theorem
there is a subsequence {xnk

}k∈N of {xn}n∈N which converges to x ∈ [a, b]. By
the triangle inequality,

|x− ynk
| ≤ |x− xnk

|+ |xnk
− ynk

| ≤ |x− xnk
|+ 1

nk
tends to 0 as k →∞, so ynk

→ x, also. By continuity of f at x, f(xnk
)→ f(x)

and f(ynk
)→ f(x), so |f(xnk

)− f(ynk
)| → 0, a contradiction.


