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NOVEMBER 7

Each problem is worth 10 points.
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Problem 1.
a. (3 points) Let {a,},en be a sequence of real numbers. Define

lim sup a,,.
n—00

b. (7 points) Let {a,}nen and {b, }ren be sequences of real numbers. As-
sume that lim sup a,, and lim sup b,, are finite. Prove that

lim sup(a,, + b,) < limsup a,, + lim sup b,,.

n—oo n—oo n—oo

Give an example where equality does not hold.

Solution.

a. Define for integer N > 1, sy = sup{a, : n > N}. If sy = oo for all N
then lim sup,,_,,, @, = 0o. Otherwise, limsup,,_,, @, = limy_00 SN
b. For integer N > 1, let

sy = sup{a, : n > N}, ty =sup{b, :n > N},

and assume that IV is sufficiently large so that both of these suprema
are finite. Since sy is an upper bound for {a, : n > N} and ty is
an upper bound for {b, : n > N}, sy + ty is an upper bound for
{a, +b, :n >N}, so

ry = sup{a, +b, :n > N}
satisfies ry < sy + ty. Hence
limsup(a, +b,) = lim ry
N—o0
< lim (sy + ty) = limsup a, + limsup b,,.
N—o0

An example in which equality does not hold is
{ 1 nodd { 0 mnodd
a, = b

0 neven ’ " 11 neven

Then lim sup a,, = limsup b, = 1, while lim sup(a,, + b,) = 1.
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Problem 2.

a. (3 points) State the definition of a metric d on a set S.
b. (7 points) Given two points x = (z1,...,2,) and y = (y1, ..., ¥) in R”,
the ¢! and ¢~ distances between z and y are

n

d1(£7y) = Z ‘xz - yi‘a doo(£7 Q) = maX{lxi - yz|7z - 17 ,TL}

1=1

Check that the ¢! and ¢> distances are metrics on R”, then check that
a sequence {z, hren of elements of R” converges in the ¢! metric if and
only if it converges in the /> metric.

Solution.

a. A metric d is a function d : S x § — R satisfying
i. For all x € S, d(z,x) =0, and for all z # y in S, d(z,y) > 0.
ii. For all z,y in S, d(x,y) = d(y, x).
iii. The triangle inequality holds: for all z,y,z in S, d(z, z) < d(z,y)+
d(y, z).
b. ¢! metric:
i. By non-negativity of the absolute value,

di(z,y) =) |z =il =0
=1

if and only if z; = y; for all 4, that is, if and only if z = y. Otherwise
dl (zn Q) > 0.

11.

n

di(z,y) = Z i — il = Z lyi — x| = di(y, ).

i=1 =1



NOVEMBER 7

iii. By the triangle inequality on R,

dl(z,z) = Z \SUZ - Zz\
i=1

< Z (lzi =il + |y — z]) = du(z,y) + di(y, 2).
i=1
(>° metric:

i. doo(2,y) = max{|x; — y;|} = 0 if and only if |z; — y;| = 0 for all 4,
which holds if and only if z; = y; for all 7, that is z = y. Otherwise
doo(z,y) > 0.

ii. Since |z; — yi| = |yi — i, doo(z, y) = doo(y, 2).

iii. In dy(z,2), let |z; — 2| obtain the maximum. By the triangle
inequality on R!,
do(z, 2) = |2; — |
<lzi =yl + lyi — 2] < dso(z,y) + doo(y, 2)-
The inequality

doo(2,y) < di(2,y) < ndoo(2,y)

implies that limy_,o doo (2, z) = 0 if and only if limy_, di(z), ) = 0,
so {z; }ren converges in d; if and only if it converges in d.
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Problem 3. The binomial coefficients are defined for integers 0 < k£ < n by
(v) = o

a. (5 points) Decide, with proof, whether the series >, ﬁ converges.

n

b. (5 points) Prove that (QQL:) — 0 as n — oo.

[Hint: first check that (22’2“2,) = 2’;;1 . gz:g ..... %]
Solution.
a. We check that the series converges by the ratio test. For n > 1,
2n 2
n+1 1
Z(nT:—)Q = ( ) — - <1
(n+1) (2n+2)(2n +1) 4

as n — 00, so that the condition of the ratio test is met.

b. We first check the identity for (2’;”) by induction.

Base case (n = 1): We have (2%) = 1 as wanted.

Inductive step: Assume for some n > 1 that

*) 2n—1 2n-3 1
220 2p 2n —2 2
Then
(i) _ @Cn+2)@2n+1) ()
22n+2 4(n + 1)2 22n
_2n+1 2n-—1 1
C2n+2  2n 2’
completing the inductive step.
Let, for n > 2,
n—1 2n—3 1 ("
Sn fr— . “ e e e 0 — —
2n  2n —2 2 22
o 2n—2 2n—4 2
" 2n—-1 2n-3 3
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Note that the product defining ¢,, has one fewer term than that defining
Sn. By comparing term-by-term,

1
tn > Sy > §tn

Also, both sequences are bounded below, and decreasing, hence con-
verge to a non-negative limit. Let s,, — s, t, — t. Then s,t,, — st. But
Spty 1s a telescoping product, equal to %, so st = 0. The inequalities
imply ¢ > s > £ and hence s =t = 0.



MATH 320, FALL 2017 MIDTERM 2 7

Problem 4. (10 points) Prove that a continuous function on a closed bounded
interval [a, b] is uniformly continuous.

Solution. Suppose for contradiction that f is continuous, but not uniformly
continuous on [a,b]. Let € > 0 violate the definition of uniform continuity
for f. Hence there are sequences of points {x,}nen, {Un}tnen in [a,b] with
2, — yn| < L and |f(2,) — f(yn)| > €. By the Bolzano-Weierstrass Theorem
there is a subsequence {z,, }ren of {2, }neny Which converges to x € [a, b]. By
the triangle inequality,

1
‘x_ynk‘ < |$_xnk‘ + |xnk _ynk‘ < |£U—2an‘ +n_k

tends to 0 as k — 00, so y,,, — z, also. By continuity of f at z, f(z,, ) — f(x)
and f(yn,) — f(x), so |f(xn,) — f(yn,)| = 0, a contradiction.



