MATH 311/521, FALL 2025 PRACTICE FINAL

DECEMBER 15

Each problem is worth 10 points.
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Problem 1. Let g.(n) and g,(n) be the number of partitions of n into an
even or odd number of distict parts. Give a proof of Euler’s identity

(1) — qu(n) :{ (—1)) n=

0 otherwise

3724
2

Hence or otherwise, conclude the formal product identity

b(x) = ﬂu M) =1+ f:(—w’ (g; 4 :c) |

Solution. See the course text, p.448.
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Problem 2.

a.
b.

Soluti

o0
>

n
n=1

C.

Define the abscissa of convergence of a Dirichlet series F'(s) = > | .

Let p(n) be the Mobius function of n, d(n) the number of divisors of
n, and o(n) the sum of the divisors of n. Express S0, ) g~oe dn)

n]_ns7 n=1 ns

D e UT(;L) as Euler products, and in terms of ((s) = >°°, & and

n=1 n=1 ns>
determine the abscissa of convergence of each series.

. (Extra credit) Recall that a finite abelian group is isomorphic to a group

of form P, Z/p"LOL/pP L& - -®L[/p™7Z where a1 > ag- -+ > aj > 0.
How many isomorphism classes of abelian groups of order p* exist for

p prime? Let g(n) be the number of isomorphism classes of abelian
q(n)
ns

groups of order n. Express Y >,
of the Riemann zeta function.

ion. a. The abscissa of absolute convergence of a Dirichlet series is
a real number ¢ so that > |a,|/n® converges for s > ¢ and diverges
for s < c.

All three functions are multiplicative, so the Euler products are deter-

mined on prime powers. For p, p(p) = —1 and p(p*) = 0 for & > 2, so
pn) I, (1 — pl) = ((s)™!. The abscissa of absolute convergence

n ns

is 1 as it is for ¢ (Which is determined by the p-test for series). We have

~2
dp) = k+1s0 X, % =TT, (2 57) =TI, (1—5) = ().
The abscissa of absolute convergence is again 1 from the theorem on
products of series. We have o(p*) =p*F +p" 1+ +1= p so the
Euler product is given by

WD (1+ 5+ ) 1+ B+ Bv ) =gt -1

p

1

p
< d(n)n, the abscissa of absolute convergence is 2.

Since n < a(n) (n
") = p(k), the number of partitions of k. It follows

We have ¢(p

k o0 o0 1
Z qg}:g) p(k) _ H (1 _ pks)*

oo

k=0
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and thus the Dirichlet series is [[7—; {(ns). The abscissa of absolute
convergence is one.
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Problem 3. The Bernoulli numbers (By) are defined by
L2k

_q_ T )k
z _ 1 =1 +Z Bk 2%k)!"

a. Calculate By, By, Bs.
b. Take logarithmic derivatives in the product sinz = z [~ <1 — ni—;>

to conclude

zcotZ:1+2222 o 2_1_222712’“ 2k

n=1 k=1
2k—1 2k:
c. Prove ((2k) = 2 @i B
Solution. a. Write
x r ez + e 2

e$—1+§_§e%—e_%
+(3)7/2 4+ (5)Y/4L+ (5)°/6! + ...
+(5)2/30+ (5)/51 4+ (3)°/7 + ...

— 1+ By2?/2! — Bya* /A + Bsxb/6! + ..

Matching up powers of x in

1+( ) /2'+( ) /4'+( ) /6l + ...
(H( ) s (5 s+ () me )

x (14 B12®/2! — Boa' /Al 4+ B3a®/6! + ...)

gives
1 1 B
21~ 231 91
1 1 B, B
o4l — 2151 T 223121 4l
1 1 B B, B

2661 2671 T 245121 223141 T Gl
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or 131 = %,Zg = 30,133
b. logsinz =logz+ Y. log( — 2—2) SO

n2m?

COS 2 _ Z n2ﬂ.2
sin z 1 — ==

The first formula for z cot z follows, and the second is reached on expanding
the geometric series for L

_n27r2
c. In the previous expression, execute the sum over n to collect

zcotz—l—ZZ T
T

+ 5 at v = 2iz,

T T rez +e 2
- +o=c—7=
et —1 2 2 €2 — e 2

222
k:+1
1+§ Bk 1—25 7T%CQIC)
k=1

22k 1 2k
o

= zcot z,

SO

Equating coefﬁments on 2% gives ¢ (2k)

By.
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Problem 4. Prove a number n is coprime to ¢ if Y ;ccpg.q) #(d) = 1, and
that the sum is zero otherwise. Using this, prove

#{M <n < M+ N,GCD(n,q) =1} = o) + 0(2¢)
q
where ¢ is Euler’s ¢ function and w(q) is the number of distinct primes that
divide q.

Solution. Let m = GCD(n, g). Then } _,  pu(d)is1if m =1and 0if m > 1.
The count required now is

2. 2 Md=) pd >, 1

M<n<M-+N d|GCD(n.q) dlg M<dn<M+N
The last sum is & + O(1) so the count is

NZ”—+ Z O(1 )N+O(2w 0.

q
dlq dlq,p(d
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Problem 5. Let
1 n =1 mod 4
xan)=<¢ =1 n=3mod4 ,
0 otherwise

C(s) = >0y 2, L(s, Xa) = Doy X‘;—(n) The Dedekind zeta function for Q(7)
1s
Co(s) = () L(s, xa) = )

m=1

Prove r(m) = #{x,y € Z,x > 0,y > 0,22 + y* = m}.

r(m)

ms

Proof. The norm of an integer = + iy in Z[i] is N(z + iy) = 2* + y*>. Since
the units of Z[i] are 1,4, —1, —i, every non-zero integer in Z[i] is associated
by multiplication by unit to a unique representative x + iy with x > 0,y > 0,
so the count #{x,y € Z,x > 0,y > 0, 2> +n? = m} is exactly the number of
integers of Z[i] of norm m, taken modulo multiplication by units. (Remark:
Z[i] is a principle ideal domain, so this is the same as the number of ideals
of norm m in the ring of integers.) By our discussion of unique factorization
into primes for Z[i], the primes of Z[i| are as follows: ramified primes (1 + 1),
with (14-4)|2, split primes 77 = p when p = 1 mod 4, these have norm p, and
inert primes p = 3 mod 4, which have norm p?. As the norm is multiplicative,
to gain an integer of norm

m=2" [ » [] ¢

p=1 mod 4 q=3 mod 4

we must have 8 = 23" even and

x4+ iy = e(1+14)" H AT N H ¢

p=1mod 4 q=3 mod 4

where € is a unit and a; may be chosen in o+ 1 ways. This proves a theorem
from early in the class on the number of ways of representing a number m
as the sum of two squares. We now check that the Euler products match up.
At 2 the local factor comes from ¢ and is (1 +27% + 272 + ...) which reflects
that there is one way to express a power of 2 as a sum of two squares. At
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p = 1 mod 4 the local factor is
(I4+p S +p 2+ P2 =0+2  +3p 2 +4p 5+ ..)
which agrees with the number of choices of a;, and at p = 3 mod 4 this is
(1=—p S 4p 2 —p 4 VA +p+p B+ . )=0+p X +p ¥ +p % +.)

which again agrees.
]
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Problem 6. Let ¢ = p" be a power of a prime and let I, be a finite field
having g elements.

a. Prove [, has characteristic p, that is, if x € IF, then p- 2 = 0 for all z,
and hence conclude F, has [F), as a subfield.

b. Conclude F; = {a € Fy,a # 0} is a multiplicative group, and hence
conclude that for all @ # 0, a*! = 1 in F,. Conclude 2 — z =
[L.cr,(z — a) and that all fields of order ¢ are isomorphic.

c. (Extra credit) For a € F, let ORD(a) be the least positive n so that
a" = 1. For d|g—1let f(d) = #{a € F; : ORD(a) = d}, g(d) = #{a €
F¥ :a’ = 1}. Prove g(d) = >_ka (k) and thus f(d) = Zkuﬂ(k)%-

Conclude F has elements of order ¢ — 1, and hence is a cycle group.

Solution. a. Evidently £-1 = 14+ 14 ... + 1 k times is eventually 0,
since there are only finitely many elements in the field. The number
must be a prime, or else the field would have a zero divisor, so p-1 =
0. The claim follows. The subfield may be taken to be the elements
0,1,2,...,p — 1 defined this way.

b. Since there are not zero-divisors, multiplication by a non-zero a € F
permutes the elements of Fi', so a has a multiplicative inverse. The
associativity follows from the multiplication in the field, and a field
always has a 1, so F is a multiplicative group. Since the order of an
element divides the order of a group, a?~! = 1. In a field 29 — 2 = 0
has no more than g solutions, and there is division of polynomials with
remainder, so ¢ — x has each field element as a root exactly once and
these are all of the roots, this gives the factorization. We have F, is a
splitting field for 29—z over the subfield IF,,, which uniquely determines
the field as [F,[z]/(Q(x)) for an irreducible polynomial Q(z) of degree
r which necessarily divides z9 — x.

c. We evidently have g(d) = >, f(k), so the claim follows if we establish
g(d) = d by Mobius inversion. Obviously a?— 1 has at most d solutions
and when d|(q — 1), 77! = 1 has exactly ¢ — 1 solutions. The map
z — 2T on [y is at most %—to—l, and in fact has to be exactly
this multiplicity for there to be enough roots of ¢! = 1. The image
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provides the required d solutions to 2¢ = 1. Now f(q — 1) = (¢ —
k
1) D kg1 % > 0.



