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DECEMBER 15

Each problem is worth 10 points.
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Problem 1. Let qe(n) and qo(n) be the number of partitions of n into an
even or odd number of distict parts. Give a proof of Euler’s identity

qe(n)− qo(n) =

{
(−1)j n = 3j2±j

2
0 otherwise

.

Hence or otherwise, conclude the formal product identity

φ(x) =
∞∏
n=1

(1− xn) = 1 +
∞∑
j=1

(−1)j
(
x

3j2+j
2 + x

3j2−j
2

)
.

Solution. See the course text, p.448.
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Problem 2.

a. Define the abscissa of convergence of a Dirichlet series F (s) =
∑∞

n=1
an
ns .

b. Let µ(n) be the Möbius function of n, d(n) the number of divisors of

n, and σ(n) the sum of the divisors of n. Express
∑∞

n=1
µ(n)
ns ,

∑∞
n=1

d(n)
ns ,∑∞

n=1
σ(n)
ns as Euler products, and in terms of ζ(s) =

∑∞
n=1

1
ns , and

determine the abscissa of convergence of each series.
c. (Extra credit) Recall that a finite abelian group is isomorphic to a group

of form
⊕

p Z/pa1Z⊕Z/pa2Z⊕· · ·⊕Z/pakZ where a1 ≥ a2 · · · ≥ ak > 0.

How many isomorphism classes of abelian groups of order pk exist for
p prime? Let q(n) be the number of isomorphism classes of abelian

groups of order n. Express
∑∞

n=1
q(n)
ns as an Euler product and in terms

of the Riemann zeta function.

Solution. a. The abscissa of absolute convergence of a Dirichlet series is
a real number c so that

∑
n |an|/ns converges for s > c and diverges

for s < c.
b. All three functions are multiplicative, so the Euler products are deter-

mined on prime powers. For µ, µ(p) = −1 and µ(pk) = 0 for k ≥ 2, so∑
n
µ(n)
ns =

∏
p

(
1− 1

ps

)
= ζ(s)−1. The abscissa of absolute convergence

is 1 as it is for ζ (which is determined by the p-test for series). We have

d(pk) = k + 1 so
∑

n
d(n)
ns =

∏
p

(∑∞
k=0

k+1
pks

)
=
∏

p

(
1− 1

ps

)−2
= ζ(s)2.

The abscissa of absolute convergence is again 1 from the theorem on

products of series. We have σ(pk) = pk + pk−1 + · · ·+ 1 = pk+1−1
p−1 so the

Euler product is given by

∞∑
n=1

σ(n)

ns
=
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)(
1 +

p

ps
+
p2

p2s
+ · · ·

)
= ζ(s)ζ(s− 1).

Since n ≤ σ(n) ≤ d(n)n, the abscissa of absolute convergence is 2.
c. We have q(pk) = p(k), the number of partitions of k. It follows

∞∑
k=0

q(pk)

pks
=

∞∑
k=0

p(k)

pks
=
∞∏
k=1

(
1− pks

)−1
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and thus the Dirichlet series is
∏∞

n=1 ζ(ns). The abscissa of absolute
convergence is one.
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Problem 3. The Bernoulli numbers (Bk) are defined by

x

ex − 1
= 1− x

2
+
∞∑
k=1

(−1)k+1Bk
x2k

(2k)!
.

a. Calculate B1, B2, B3.

b. Take logarithmic derivatives in the product sin z = z
∏∞

n=1

(
1− z2

n2π2

)
to conclude

z cot z = 1 + 2
∞∑
n=1

z2

z2 − n2π2
= 1− 2

∞∑
n=1

∞∑
k=1

z2k

n2kπ2k
.

c. Prove ζ(2k) = 22k−1π2k

(2k)! Bk.

Solution. a. Write

x

ex − 1
+
x

2
=
x

2

e
x
2 + e−

x
2

e
x
2 − e−x2

=
1 + (x2)2/2! + (x2)4/4! + (x2)6/6! + ...

1 + (x2)2/3! + (x2)4/5! + (x2)6/7! + ...

= 1 +B1x
2/2!−B2x

4/4! +B3x
6/6! + ...

Matching up powers of x in

1 +
(x

2

)2
/2! +

(x
2

)4
/4! +

(x
2

)6
/6! + ...

=

(
1 +

(x
2

)2
/3! +

(x
2

)4
/5! +

(x
2

)6
/7! + ...

)
×
(
1 +B1x

2/2!−B2x
4/4! +B3x

6/6! + ...
)

gives

1

222!
=

1

223!
+
B1

2!
1

244!
=

1

245!
+

B1

223!2!
− B2

4!
1

266!
=

1

267!
+

B1

245!2!
− B2

223!4!
+
B3

6!
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or B1 = 1
6 , B2 = 1

30 , B3 = 1
42 .

b. log sin z = log z +
∑

n log(1− z2

n2π2 ) so

cos z

sin z
=

1

z
−
∑
n

2z
n2π2

1− z2

n2π2

.

The first formula for z cot z follows, and the second is reached on expanding
the geometric series for 1

1− z2

n2π2

.

c. In the previous expression, execute the sum over n to collect

z cot z = 1− 2
∞∑
k=1

z2k

π2k
ζ(2k).

We now match this up with x
ex−1 + x

2 at x = 2iz,

x

ex − 1
+
x

2
=
x

2

e
x
2 + e−

x
2

e
x
2 − e−x2

= z cot z,

so

1 +
∞∑
k=1

(−1)k+1 (2iz)2k

(2k)!
Bk = 1− 2

∞∑
k=1

z2k

π2k
ζ(2k).

Equating coefficients on z2k gives ζ(2k) = 22k−1π2k

(2k)! Bk.
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Problem 4. Prove a number n is coprime to q if
∑

d|GCD(n,q) µ(d) = 1, and
that the sum is zero otherwise. Using this, prove

#{M ≤ n < M +N,GCD(n, q) = 1} =
φ(q)

q
N +O(2ω(q))

where φ is Euler’s φ function and ω(q) is the number of distinct primes that
divide q.

Solution. Let m = GCD(n, q). Then
∑

d|m µ(d) is 1 if m = 1 and 0 if m > 1.
The count required now is∑

M≤n<M+N

∑
d|GCD(n,q)

µ(d) =
∑
d|q

µ(d)
∑

M≤dn<M+N

1.

The last sum is N
d +O(1) so the count is

N
∑
d|q

µ(d)

d
+

∑
d|q,µ(d)6=0

O(1) =
φ(q)

q
N +O(2ω(q)).
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Problem 5. Let

χ4(n) =

 1 n ≡ 1 mod 4
−1 n ≡ 3 mod 4
0 otherwise

,

ζ(s) =
∑∞

n=1
1
ns , L(s, χ4) =

∑∞
n=1

χ4(n)
ns . The Dedekind zeta function for Q(i)

is

ζQ(i)(s) = ζ(s)L(s, χ4) =
∞∑
m=1

r(m)

ms
.

Prove r(m) = #{x, y ∈ Z, x ≥ 0, y > 0, x2 + y2 = m}.

Proof. The norm of an integer x + iy in Z[i] is N(x + iy) = x2 + y2. Since
the units of Z[i] are 1, i,−1,−i, every non-zero integer in Z[i] is associated
by multiplication by unit to a unique representative x+ iy with x ≥ 0, y > 0,
so the count #{x, y ∈ Z, x ≥ 0, y > 0, x2 + n2 = m} is exactly the number of
integers of Z[i] of norm m, taken modulo multiplication by units. (Remark:
Z[i] is a principle ideal domain, so this is the same as the number of ideals
of norm m in the ring of integers.) By our discussion of unique factorization
into primes for Z[i], the primes of Z[i] are as follows: ramified primes (1 + i),
with (1+ i)|2, split primes ππ = p when p ≡ 1 mod 4, these have norm p, and
inert primes p ≡ 3 mod 4, which have norm p2. As the norm is multiplicative,
to gain an integer of norm

m = 2a
∏

p≡1 mod 4

pα
∏

q≡3 mod 4

qβ

we must have β = 2β′ even and

x+ iy = ε(1 + i)a
∏

p≡1 mod 4

πα1πα−α1

∏
q≡3 mod 4

qβ
′

where ε is a unit and α1 may be chosen in α+ 1 ways. This proves a theorem
from early in the class on the number of ways of representing a number m
as the sum of two squares. We now check that the Euler products match up.
At 2 the local factor comes from ζ and is (1 + 2−s + 2−2s + ...) which reflects
that there is one way to express a power of 2 as a sum of two squares. At
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p ≡ 1 mod 4 the local factor is

(1 + p−s + p−2s + ...)2 = (1 + 2p−s + 3p−2s + 4p−3s + ...)

which agrees with the number of choices of α1, and at p ≡ 3 mod 4 this is

(1− p−s + p−2s− p−3s + ...)(1 + p−s + p−2s + ...) = (1 + p−2s + p−4s + p−6s + ...)

which again agrees.
�
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Problem 6. Let q = pr be a power of a prime and let Fq be a finite field
having q elements.

a. Prove Fq has characteristic p, that is, if x ∈ Fq then p · x = 0 for all x,
and hence conclude Fq has Fp as a subfield.

b. Conclude F×q = {a ∈ Fq, a 6= 0} is a multiplicative group, and hence

conclude that for all a 6= 0, aq−1 = 1 in Fq. Conclude xq − x =∏
a∈Fq(x− a) and that all fields of order q are isomorphic.

c. (Extra credit) For a ∈ F×q , let ORD(a) be the least positive n so that
an = 1. For d|q−1 let f(d) = #{a ∈ F×q : ORD(a) = d}, g(d) = #{a ∈
F×q : ad = 1}. Prove g(d) =

∑
k|d f(k) and thus f(d) =

∑
k|d µ(k)dk .

Conclude F×q has elements of order q − 1, and hence is a cycle group.

Solution. a. Evidently k · 1 = 1 + 1 + ... + 1 k times is eventually 0,
since there are only finitely many elements in the field. The number
must be a prime, or else the field would have a zero divisor, so p · 1 =
0. The claim follows. The subfield may be taken to be the elements
0, 1, 2, ..., p− 1 defined this way.

b. Since there are not zero-divisors, multiplication by a non-zero a ∈ F×q
permutes the elements of F×q , so a has a multiplicative inverse. The
associativity follows from the multiplication in the field, and a field
always has a 1, so F×q is a multiplicative group. Since the order of an

element divides the order of a group, aq−1 = 1. In a field xq − x = 0
has no more than q solutions, and there is division of polynomials with
remainder, so xq − x has each field element as a root exactly once and
these are all of the roots, this gives the factorization. We have Fq is a
splitting field for xq−x over the subfield Fp, which uniquely determines
the field as Fp[x]/(Q(x)) for an irreducible polynomial Q(x) of degree
r which necessarily divides xq − x.

c. We evidently have g(d) =
∑

k|d f(k), so the claim follows if we establish

g(d) = d by Möbius inversion. Obviously ad−1 has at most d solutions
and when d|(q − 1), xq−1 = 1 has exactly q − 1 solutions. The map

x 7→ x
q−1
d on F×q is at most q−1

d -to-1, and in fact has to be exactly

this multiplicity for there to be enough roots of xq−1 = 1. The image
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provides the required d solutions to xd = 1. Now f(q − 1) = (q −
1)
∑

k|q−1
µ(k)
k > 0.


