$\mathbf{MATH} \ \mathbf{311/521}, \ \mathbf{FALL} \ \mathbf{2025} \ \mathbf{MIDTERM}$

OCTOBER $8,\,2025$

Each problem is worth 10 points.

Problem 1. Give the proof of Wilson's theorem, for a prime p, $(p-1)! \equiv -1 \mod p$.

Solution. The theorem is trivial if p=2, so assume p is odd. Let g be a primitive root mod p. Then the reduced residues mod p are $g, g^2, ..., g^{p-1}$ in some order, so their product is $g^{1+2+...+(p-1)}=g^{\frac{p(p-1)}{2}}$. Since p is odd, $p|\frac{p(p-1)}{2}$. By Fermat's little theorem $g^p\equiv g \mod p$, so $(p-1)!\equiv g^{\frac{p-1}{2}} \mod p$. Thus $(p-1)!^2\equiv g^{p-1}\equiv 1 \mod p$ by Fermat's little theorem, so $g^{\frac{p-1}{2}}\equiv \pm 1 \mod p$. It must be -1 since $g, g^2, ..., g^{p-1} \mod p$ are all distinct, and $g^{p-1}\equiv 1 \mod p$. Alternatively, for each reduced residue $x \mod p$ let $x\overline{x}\equiv 1 \mod p$. If $x=\overline{x}$ then $x^2\equiv 1 \mod p$ so $x\equiv \pm 1 \mod p$. Otherwise x and \overline{x} may be paired in the product, which leaves a product of $1\cdot (-1)\equiv -1 \mod p$.

Problem 2. State the principle of inclusion and exclusion. Using this or otherwise prove a formula for the number of reduced residues to a modulus m with prime factorization $m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, $\alpha_i \ge 1$.

Solution. Given a finite set X and subsets $S_1, S_2, ..., S_k$, the principle of inclusion-exclusion states

$$\left| X \setminus \bigcup_{i=1}^{k} S_i \right| = |X| - \sum_{i} |S_i| + \sum_{i_1 < i_2} |S_{i_1} \cap S_{i_2}| + \dots + (-1)^k |S_1 \cap \dots \cap S_k|.$$

Let X be the set of residues modulo m, and for each p_i let S_{p_i} be those residues divisible by p_i . A residue is reduced if it is divisible by none of the p_i . Since $|S_{p_{i_1}} \cap ... \cap S_{p_{i_j}}| = \frac{m}{p_{i_1}...p_{i_j}}$, the number of reduced residues is

$$m - \sum_{i} \frac{m}{p_i} + \sum_{i_1 < i_2} \frac{m}{p_{i_1} p_{i_2}} + \dots + (-1)^k \frac{m}{p_1 \dots p_k} = m \prod_{j=1}^k \left(1 - \frac{1}{p_j} \right).$$

Problem 3.

- a. State Fermat's little theorem.
- b. Give the proof from lecture that the Legendre symbol to a prime p is given by $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$.
- **Solution.** a. Fermat's little theorem states that if m > 1 is a positive integer and (a, m) = 1 then $a^{\phi(m)} \equiv 1 \mod m$, where $\phi(m)$ is the number of reduced residues modulo m.
 - b. We assume p is an odd prime. The claim is trivial if $a \equiv 0 \mod p$, so we can assume $a \not\equiv 0 \mod p$. The map $x \mapsto x^2$ is 2-to-1 on its image in the reduced residues since x and -x have the same square. Thus if g is a primitive root $\mod p$ then the even powers of g among $g, g^2, ..., g^{p-1}$ are quadratic residues and the odd powers are non-residues. We have $(g^k)^{\frac{p-1}{2}} \equiv g^{\frac{p-1}{2}} \equiv -1 \mod p$ if k is odd, and $(g^k)^{\frac{p-1}{2}} \equiv g^{p-1} \equiv 1 \mod p$ if k is even, which completes the proof.

Problem 4. Find a primitive root modulo $169 = 13^2$.

Solution. We'll check 2 is a primitive root. The powers of 2 mod 13 are 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1. As these are all of the reduced residues mod 13, 2 is a primitive root mod 13. We have $2^{12} = 4096 \equiv 40 \mod 169$. Since the order of 2 mod 169 is 12 or 156, the order must be 156, and it is again a primitive root.