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Problem 1. (a) Proof by contradiction. Suppose that a > b. Choose a number ε
satisfying 0 < ε < a− b. Since limn→∞ an = a and limn→∞ bn = b, there exists N large so
that for all n ≥ N we have

|a− an| < ε/2, |b− bn| < ε/2.

Then
a < an + ε/2 ≤ bn + ε/2 ≤ b+ ε,

which contradicts the inequality ε < a− b.
(b) Define the positive and negative parts of f by f+(x) = max{f(x), 0} and f−(x) =

min{f(x), 0}. Then f+ ≥ 0 and f− ≤ 0 everywhere. Moreover, we have

f(x) = f+(x) + f−(x), and |f(x)| = f+(x)− f−(x).

(Consider two alternatives: f(x) ≥ 0 or f(x) < 0 and you will see it easily.) The functions
f+ and f− are Riemann integrable because f is Riemann integrable (prove it). The
triangle inequality gives us∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

a
f+(x)dx+

∫ b

a
f−(x)dx

∣∣∣∣ ≤ ∣∣∣∣∫ b

a
f+(x)dx

∣∣∣∣+

∣∣∣∣∫ b

a
f−(x)dx

∣∣∣∣
Since f+(x) ≥ 0 and f−(x) ≤ 0 for all x, the right-hand side is equal to∫ b

a
f+(x)dx−

∫ b

a
f−(x)dx =

∫ b

a
(f+(x)− f−(x))dx =

∫ b

a
|f(x)|dx,

which proves the inequality. An alternative solution: prove the inequality in question in
the case when f is a step function. Passing to supremum conclude the inequality for an
arbitrary Riemann integrable function.

Problem 2. Let g : R → R be a continuous function such that g(x) = 0 for x /∈ [0, 1]
and

∫
R g(x)dx = 1. For example we consider the ”triangular function”

g(x) =


0 if x ≤ 0,
x if x ∈ (0, 1/2],
1− x if x ∈ (1/2, 1],
0 if x > 1.
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Draw the graph of g to see that it indeed has the properties listed above. Now define
f : R→ R by the formula

f(x) =

∫ x

0
g(t)dt.

By the Fundamental Theorem of Calculus, f is differentiable. We easily check that f(x) =
0 for x ≤ 0 and f(x) = 1 for x ≥ 1 and f is strictly increasing on (0, 1).

Problem 3. It is clear that f is differentiable on R \ {0}. We check from the definition
of the derivative that f ′(0) exists:

lim
h→0−

f(h)− f(0)

h
= 0,

lim
h→0+

f(h)− f(0)

h
= lim

h→0+
h sin(1/h) = 0,

where the last equality follows from the fact that | sin(1/h)| ≤ 1 and limh→0 h = 0. We
conclude that the limit

f ′(0) = lim
h→0

f(h)− f(0)

h

exists and is equal to zero. Thus, f is differentiable. On the other hand, for x > 0 we
have

f ′(x) = 2x sin(1/x)− cos(1/x).

The limit limx→0+ f
′(x) does not exist because limx→0+ 2x sin(1/x) = 0 and the limit

limx→0+ cos(1/x) does not exist (prove it). We conclude that the derivative f ′ is not
continuous at zero.

Consider g(x) = x + 2f(x). For x ≤ 0 we have g′(x) = 1. For x > 0 we have
g′(x) = 1 + 2x sin(1/x) − cos(1/x) > 0 because |cos(1/x)| ≤ 1 and when cos(1/x) = 1
we have 2x sin(1/x) > 0 (check this). So g′(x) > 0 as desired. On the other hand, g is
not increasing in any open interval about zero. Indeed, in any such interval it attains the
value 1 infinitely many times, namely at all x of the form 1/kπ where k ∈ N.

Problem 4. Proof by induction with respect to n. For n = 1 we have equality. Suppose
that the inequality holds for some n ≥ 1, so that (1 + x)n ≥ 1 + nx for all x > −1.
Multiplying both sides by (1 + x), which is positive, we obtain

(1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x,

which shows that the inequality holds for n + 1. By the induction principle, it holds for
all n. Here is an alternative solution. Set f(x) = (1 +x)n−1−nx. We want to show that
f(x) ≥ 0 for all x ≥ −1. It follows immediately from the binomial formula that f(x) ≥ 0
for x > 0 so we need to prove the inequality for x ∈ [−1, 0]. But f is a continuous function
on that interval and since [−1, 0] is a bounded closed interval, f must attain its minimum.
We easily check that the minimum is f(0) = 0, so for all x ∈ [−1, 0] we have f(x) ≥ 0.
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Problem 5. Set f(x) =
∑n

k=1(x−ak)2. We have limx→±∞ f(x) =∞ so f must attain a
global minimum at some x0 ∈ R (prove it). At x0 we have f ′(x0) = 0 where the derivative
f ′ is given by

f ′(x) = 2

n∑
k=1

(x− ak).

So the condition f ′(x0) = 0 is equivalent to

x0 =
1

n

n∑
k=1

ak,

which shows that x0 is the arithmetic mean of a1, . . . , an.

Problem 6. We need to find the maximal distance between two points in an isosceles
triangle of the given perimeter L. (Let’s call this distance the diameter of the triangle.)
Such a triangle is specified by an angle 2α between its two sides of equal length. Here
α ∈ [0, π/2] (we allow the triangle to degenerate to an interval for α = 0 or α = π/2).
Denote by a the length of each of these sides and by b the length of the third remaining
side. We have 2a+ b = L and b = 2a sinα (draw a picture to see this), so

2a+ 2a sinα = L

Thus, we have a = L/2(1 + sinα) and b = L sinα/(1 + sinα). The maximal distance
between two points in a triangle is the length of its longest sides. The longest side might
be either a or b depending on which one is greater. Suppose that a is the longest side. The
inequality a ≥ b is equivalent to a ≥ 2a sinα or 1/2 ≥ sinα, which in turn is equivalent to
α ∈ (0, π/6). The length of the longest side, as a function of α, is therefore given by

F : [0, π/2]→ R,

F (α) =

{
a = L

2(1+sinα) for α ∈ (0, π/6],

b = L sinα
1+sinα for α ∈ (π/6, π/2).

The two formulae agree at α = π/6 which shows that F is continuous. As a continuous
function on a closed bounded interval, F must attain a maximum. First we check the
endpoints. We easily verify that F (0) = F (π/2) = L/2. Now suppose that there is a
maximum α0 in the interior (0, π/2). Since F is differentiable on (0, π/6) and (π/6, π/2),
either α0 = π/6 or it lies in one of these open intervals and satisfies F ′(α0) = 0. We
compute

F ′(α) =

{
− L cosα

2(1+sinα)2
for α ∈ (0, π/6),

L cosα
(1+sinα)2

for α ∈ (π/6, π/2).

Since cos has no zeroes in (0, π/2) such α0 cannot exist. It remains to check the value of
F (α) for α = π/6. We have F (π/6) = L/3 which is strictly smaller than L/2 = F (0) =
F (π/2). We conclude that the greatest diameter is obtained when the triangle degenerates
to a single interval of length L/2. Moreover, by taking triangles with α > 0 but α→ 0 we
can obtain diameter arbitrarily close to L/2. This shows that the smallest circle that can
cover all isosceles triangles of perimeter L has diameter equal to L/2.
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Bonus problem. Suppose for contradiction that f has infinitely many zeros in the
interval [0, 1]. Perform the method of bisection to find a nested sequence of intervals
{[an, bn]}∞n=0 such that |bn − an| = 1

2n , [an+1, bn+1] ⊂ [an, bn] for each n, and [an, bn]
contains infinitely many zeros of f for each n. Notice that {an}∞n=0 is an increasing
sequence, which is bounded above. Let α = sup{an}. One may check that an → α and
bn → α. Choose for each n, xn ∈ [an, bn] such that f(xn) = 0. By the squeeze principle,
xn → α, and thus, since f is differentiable, therefore continuous, f(α) = 0.

Let f ′(α) = c 6= 0. Choose δ > 0 sufficiently small so that, if x ∈ [0, 1] and |x−α| < δ,
then ∣∣∣∣f(x)− f(α)

x− α
− c
∣∣∣∣ < |c|2 .

Since f(α) = 0, this implies
|c|
2
≤
∣∣∣∣ f(x)

x− α

∣∣∣∣
so f(x) 6= 0. In particular, f has a single zero at α in the interval (α − δ, α + δ). But
(α− δ, α+ δ) contains [an, bn] for all sufficiently large n, a contradiction.

4


