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Problem 1. We use Euler’s formula e = cosz +isinz. For example, in (8) we have

1—e™/2 1—i (1—d)2 1—2i+4
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= —1.

Problem 2. You can plot the functions using https://www.wolframalpha.com/\
Just type "polar plot” followed by the function that you want to plot. For example,
”polar plot sin x”. To compute the area enclosed by the graph of f = f(#) from 6y to
01, we need to compute the integral in polar cooordinates

01
A= f(6)%de.
)

For example, in (6) we have

2 2
A= / (1 + cos 0)%dh = / (1 +2cos + cos® 0)do.
0 0

2T
/ 1df = 2m.
0

2w
/ 2 cosfdf = 2sin(2m) — 2sin(0) = 0.
0

Observe that

As regards the last integral, we use the double angle formula:

2T 1 2T 1 2T
/ cos? 0df = — / (1+cos(20))d = 7 + = / cos(26)d6
0 2 0 2 0

1 47 1 ]_
=7+ 4/0 cosudu = m + isin(47f) - Zsin(()) =T,

where in the second line we have used the substitution v = 26. We conclude that
A = 3mw. The other examples are similar.


https://www.wolframalpha.com/

Problem 3. Let

flx) =1/1+ V.

Note that f is strictly increasing on [0,9] and f(0) =1, f(9) = 2, therefore there is an
inverse function g: [1,2] — [0,9]. Instead of computing the integral of f over [0,9], we
will compute the integral of g over [1,2]. The two are related by

9 2
/ f(z)dx +/ g(y)dy =9 x 2 =18.
0 1

(Draw a picture to illustrate this!) In order to find g = f~! we solve f(z) =y for z.

y=y\1+Vz,

y2 —-1= \/‘%7

-1 ==
So g(y) = (y? — 1)? is the inverse of f. We compute

2 2 2
1. 2 38
/ g(y)dyz/ (W' =2+ Ddy = |2v° — v +y| =
. . 57 73 . 15

Therefore,
38 232
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Problem 4. The integral in question is the sum of two integrals

2 2
/ x\/4—m2dx—3/ VA4 — x22dx.
2 )

The first one is zero because the function f(z) = zv4 — 2?2 is odd (that is, f(—z) =
—f(z)), and we integrate it over an interval symmetric with respect to 0. To compute
the second integral, we observe that the equation of the circle of radius 2 and centre
at (0,0) is

2 4y =4,

so the graph of the function y = v/4 — 22 is the upper-half circle. Its area is 27 (since
the radius is 2 and the area of the entire circle is 47), so

2
/ V4 — 22dx = 2.
—2

Using the previous computation we obtain

/2 (x —3)V4 — 22dx = —6.
-2



Problem 5. The average value of sinz over [0, 7/2] is

1

w/2
77/2/0 sin zdx = %(—COS(TI’/Q) + cos(0)) = %

For sin?z we proceed in the same way as in the solution to Problem 1 (where we

integrated cos? z), using the double angle formula and substitution u = 2.

Problem 6. Let us discuss only example (4) as the others are similar. The total
mass of the rod is

L L/2 L 1 9 9 3.9
m = p(x)dr = zdr + —dx = -(L/2)*+ (L/2)* = S L*.
0 0 L2 2 2 8

The centre of mass is

L
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The moment of inertia is

L L2 L
I:/ x2p(1:)dx:/ x3d:L“+/ —2dx
0 0 L/2 2

L 31

1
= —(L/2)* + Z(L* — (L/2)%) = ——L*
T2+ ST = (L/2)) = =
Finally, the radius of gyration is
1
r?=== ELQ.
m 72

Problem 7. Consider the function g: [a,b] — R given by g(z) = f(z) — x. It is
continuous as the sum of two continuous functions. We have

gla) = fla) —a=0 and  g(b) = f(b) =0 <0
because f(a) and f(b) belong to the interval [a,b]. By the intermediate value theorem,
there exists ¢ € [a, b] such that g(c) = 0. But this is equivalent to f(c) = c.

Problem 8. Let x be any real number. For every natural number n the open interval
(z — %, x + %) contains a point of A because A is dense. Choose any such point and
call it x,,. Since |z — x| < %, we have lim,, o, , = x. Since all of z,, belong to A, we
have f(x,) = 0 for all n. On the other hand, f is continuous at x, so

f() = lim f(z,) =0.

Since = was chosen arbitrarily, we have f = 0 everywhere.



Bonus problem 1. Let a =sup{z € [0,1] : f(z) > 0}. We claim f(«) = 0. Suppose
otherwise. Since g is continuous at «, there is ¢ > 0 such that z € [0,1] and |z —a| < 0
implies |g(x) — g(a)| < L;)' Suppose first that f(a) > 0. Then o < 1. It follows that
for some o < z < min(a+ 4, 1), f(z) <0, and thus

(@) + g(x) < g(z) < g(a) + |g(z) — g(a)] < g(a) + "2 < g(a) + f(a).

This contradicts the fact that f + ¢ is non-decreasing. Suppose instead that f(a) < 0.
Then « > 0 and so (by the supremum property) there exists z, max(0,a —0) < z < «
for which f(z) > 0. Check that

!
f(@) +g(x) 2 g(x) = g(a) —|g(x) = g(a)| = g(a) + == > g(a) + f()
which again contradicts the fact that f + g is non-decreasing.

Bonus problem 2. As a lower step function, take the constant function 0, which
has integral 0. Note that for each n > 1 there are no more than n? reduced fractions
%, 0 < p < ¢ with denominator at most n. Define upper step functions s, (x) which

s for some 1 < ¢ <n, 0<p<gq,s,(1) =1 and take value

take value 1 if ’:c — % <

L otherwise. Notice that g(z) < s, (z) for each n. Also,

TR 1 n?2 2
/sn dx</+z Z/ der < — —i——:E.

1<g<n 0<p<q” ¢ 2n

Letting n — oo proves that g is integrable with integral 0.



