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Problem 1. Suppose by contradiction that x > 0. Then x/2 > 0 and
setting h = x/2 we would get x < x/2 or equivalently 1 < 1/2, which is
a contradiction. That shows that x ≤ 0 and since we also have 0 ≤ x it
follows that x = 0.

Problem 2. By the Cauchy-Schwarz inequality(
n∑

k=1

xk

)(
n∑

k=1

yk

)
≥

(
n∑

k=1

√
xk
√
yk

)2

=

(
n∑

k=1

√
xk

1
√
xk

)2

=

(
n∑

k=1

1

)2

= n2.

Problem 3. Write w = a+ bi and z = c+ di. We need to prove that

L = |w + z|2 ≤ (|w|+ |z|)2 = |w|2 + |z|2 + 2|w||z| = R.

The left-hand side is

L = (a+ b)2 + (c+ d)2 = a2 + b2 + c2 + d2 + 2(ab+ cd),

whereas the right-hand side is

R = a2 + b2 + c2 + d2 + 2
√

(a2 + b2)(c2 + d2)

so the inequality L ≤ R is equivalent to

ab+ cd ≤
√

(a2 + b2)(c2 + d2),

which is the Cauchy-Schwarz inequality.
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Problem 4. By the invariance under translation (see Lecture 5, slides
31-32) we have ∫ b

a
f(x)dx =

∫ b−a

0
f(a+ x)dx.

On the other hand, rescaling the interval [0, b− a] by k = 1/(b− a) we get∫ b−a

0
f(a+ x)dx =

1

k

∫ k(b−a)

0
f
(
a+

x

k

)
dx = (b− a)

∫ 1

0
f(a+ (b− a)x)dx

as we wanted to prove.

Problem 5. (1) First observe that for any x we have

1−xp = (1−x)+(x−x2)+(x2−x3)+· · ·+(xp−1−xp) = (1−x)(1+x+x2+· · ·+xp−1).

Suppose that b 6= 0 and set x = a/b in the formula above to obtain

1− ap

bp
=
(

1− a

b

)(
1 +

a

b
+ · · ·+ ap−1

bp−1

)
.

Multiplying both sides by bp (which on the right-hand side we distribute by
multiplying the first bracket by b and the second by bp−1) yields

bp − ap = (b− a)(bp−1 + bp−2a+ · · ·+ ap−1)

as desired. We have proved the formula under the assumption that b 6= 0
but it obviously holds for b = 0 as well.

(2) Apply the first part to b = n+ 1 and a = n. The result is

(n+ 1)p − np = (n+ 1)p−1 + (n+ 1)p−2n+ · · ·+ (n+ 1)np−2 + np−1.

There are p terms on the right-hand side. Apart from the first one, each of
them is strictly smaller than (n+ 1)p−1 which shows that

(n+ 1)p − np < p(n+ 1)p−1.

Likewise, each of the terms in the sum apart from the last one is strictly
greater than np−1, which shows that

(n+ 1)p − np > pnp−1.

This proves (2) (where we have replaced p+ 1 by p).
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(3) We prove the inequality by induction with respect to n. First, for
n = 1 the inequality is

0 <
1

p+ 1
< 1,

which is clearly true for any positive integer p. Suppose now that the in-
equality holds for some n ≥ 1. We will show that it also holds for n + 1.
From part (2) of the problem and the induction hypothesis we obtain

(n+ 1)p+1

p+ 1
<
np+1

p+ 1
+ (n+ 1)p <

n∑
k=1

kp + (n+ 1)p =

n+1∑
k=1

kp.

On the other hand,

(n+ 1)p+1

p+ 1
>
np+1

p+ 1
+ np =

n−1∑
k=1

kp + np =

n∑
k=1

kp,

which proves the statement for n + 1. By the induction principle, the in-
equality holds for all n.

Bonus problem. Given an integer n, write 1{n} for the indicator function
of the half-open interval [n, n + 1) ⊂ R. Given a subset S ⊂ Z, write
1S =

∑
n∈S 1{n}. Thus, if S is a finite set contained in [−M,M−1] for some

M > 0, then
∫M
−M 1S(x)dx = |S| gives the cardinality of S. We suppose all

of the finite subsets given satisfy Si ⊂ [−M,M − 1].
We claim ∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ =

∫ M

−M
1−

n∏
i=1

(1− 1Si)(x)dx. (1)

Indeed, the function integrated on the right hand side takes value 1 on any
interval [m,m+ 1) such that m ∈

⋃n
i=1 Si, and nowhere else. To obtain the

desired claim, note that 1S1T = 1S∩T and expand

n∏
i=1

(1− 1Si) =

n∑
j=0

(−1)j
∑

1≤i1<i2<...<ij≤n
1Si1∩Si2∩...∩Sij .

Exchange the order of summation and integration in (1) to complete the
proof.
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Bonus problem. Observe that each ζk satisfies ζk = e
2πik
n , and hence,

ζnk = 1. They are all distinct, whence one obtains the factorization

xn − 1 =
n∏

k=1

(x− ζk)

(there are at most n roots on the left, and n roots have been identified).
We now use a helpful algebraic fact relating the roots and coefficients of a
polynomial. Set P (x) =

∏n
j=1(x−rj) = xn+an−1x

n−1+an−2x
n−2+ ...+a0.

The coefficients have value

ak = (−1)n−k
∑

1≤i1<i2<...<in−k≤n
ri1ri2 ...rin−k .

Without the factor of (−1)n−k, this latter sum is called the (n−k)th elemen-
tary symmetric polynomial on r1, ..., rk, denoted en−k(r1, ..., rn). Matching
coefficients, one finds

n∏
k=1

ζk = (−1)n+1, ∀1 ≤ j < n,
∑

1≤i1<...<ij≤n
ζi1 ...ζij = 0.

Plug in x = −1 to obtain

(−1)n − 1 = (−1)n
n∏

k=1

(1 + ζk) ⇒
n∏

k=1

(1 + ζk) = 1 + (−1)n−1.

Finally, write

xn − 1

x− 1
=

n−1∏
k=1

(x− ζk) = 1 + x+ x2 + ...+ xn−1.

Evaluate this at x = 1 to obtain

n−1∏
k=1

(1− ζk) = n.
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