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Problem 1. Rational numbers form a field, so in particular they are closed
under addition and multiplication. Thus, if x and =z + y are rational, so is
y = (x +y) — x. Likewise, if z and zy are rational and x # 0, then so is

y = (zy)z~t.

Problem 2. (Recall the definition of a Dedekind cut from Lecture 3, slide 10.)
It is obvious that «+ 3 is not empty because the same is true for a and 3. Every
Dedekind cut is bounded above (since otherwise it would be all of Q) so there
are rational numbers M and N such that for all x € a we have © < M and for
all y € B we have y < N. We conclude that x +y < M 4 N. It follows that a4
is bounded above so a + 8 # Q. This proves that the first axiom is satisfied. To
check the second axiom, suppose that x € «, y € § and ¢ is a rational number
satisfying ¢ < z +y. We have ¢ — x < y which implies that ¢ —x € [ since (3 is a
Dedekind cut. So ¢ = z+ (¢ — ) is the sum of an element of a and an element of
B and ¢ € a4+ 3, which proves that a + [ satisfies the second axiom. It remains
to prove that a + [ satisfies the third axiom. Again, let z € « and y € 5. Then
there exist r, € a and r, € § such that x <, and y < r,. The sum r, + 1, is
then an element of o + 3 such that x +y < r, + ry, which shows that the third
axiom is satisfied. Therefore, o + 3 is a Dedekind cut.

Problem 3. Suppose that y —x > 1. Let [z] be the largest integer satisfying
[x] < x (prove that such an integer exist). Then z < [z]+1 and [z]+1 < z+1 < y,
so [x] + 1 belongs to the open interval (z,y), which proves the first part of the
problem. Suppose now that x and y satisfy x < y. Since y — x > 0, there exists
a natural number m such that m(y — x) > 1 or equivalently my — max > 1.
Applying the first part of the problem to the numbers my and mx, we see that
there is an integer n such that my > n > ma. Dividing all sides by m we obtain
y > n/m > z, which proves the second part of the problem. To prove the third
part, observe that the open interval (x,y) is an uncountable set. On the other
hand, rational numbers form a countable set. This means that there must exist
an irrational number z € (z,y), which means that z < z < y.



Problem 4. Denote ¢ = (1++/5)/2. A direct calculation shows that ¢ solves
the quadratic equation 1 + ¢ = ¢%. We prove the statement by (generalised)
induction with respect to n. For n = 2 we have F, = 1 < ¢ because V5 > 1.
Suppose that the statement is true for all natural numbers smaller than or equal
to some n > 2. We want to conclude that it is true for n 4+ 1. By the induction
hypothesis

Fpp1=Fpq +F, <" 249" =¢"2(1 + ¢) = ¢,

which shows that the inequality holds for n + 1. By the induction principle, it
holds for all n > 2.

Problem 5. Define 71 = 1 and, recursively, for n > 1, T;, = Sy \ U <;ner, Sm-
Then the sets T, are countable and pairwise disjoint, and S = [J, 2, S, =
U>2; Tr. Thus we may assume that the initial sets S,, were pairwise disjoint.

Since each of .S, is countable, there is an injective map f,: S, — N for every
n. We construct a map F': S — N x N by

F(z) = (fu(x),n) for x € S,

It is well-defined since S is the disjoint union of all S,,. The map is clearly
injective: if (fn(x),n) = (fm(y), m) for some natural numbers n,m and x € S,
y € 5, then we have n = m, which shows that both  and y are elements of the
same set Sy, and f,(x) = f,(y), which shows that x = y since f, is injective. To
sum up, we have constructed an injective map from S to N x N. On the other
hand, there is an injection N x N — N given by

g(m,n) = 23"

The injectivity of ¢ follows from the fact that the prime decomposition of a
natural number is unique. Thus, the composition g o f gives an injective map
from S to N, proving that S is countable.

Problem 6. First, we show that the decomposition, if exists, is unique. Sup-
pose that we have another pair of polynomials ()1 and R; satisfying deg R <
deg B and
Then

(@—-Q1)B=R —R
The polynomial on the right-hand side is of degree strictly smaller than deg B.

On the other hand, the polynomial on the right-hand side has degree deg(Q —
Q1) + deg B. So we have

deg(Q — Q1) +deg B = deg(R; — R) < deg B,



which can happen only if deg(Q — Q1) < 0 and so @ — @1 = 0. This shows that
@ = @1 and R = R;. This shows uniqueness of the decomposition.

It remains to prove that such @ and R exist. We prove it by (generalised)
induction with respect to the degree n = deg P. Denote m = degB. The
statement clearly holds when n < m, in which case we take Q = 0 and R = P.
This proves the first inductive step. Suppose that the statement holds for all
natural numbers smaller than some n > m. We want to conclude that it also
holds for n. Write

P(x)=ag+ar1x+ -+ apz", an # 0,

B(x) =bg+ bix + -+ bpa™, by, # 0.

Consider the polynomial

(Note that we are using here the assumption that n > m.) The degree of P; is
at most n. However, the coefficient in front of the power " in P;(z) is

Gnp,
n — by = 0,

bm

which shows that deg P, < n. By the induction hypothesis, there are polynomials
@1 and R; such that deg R; < deg B and

P = Q1B+ Ry.
Equivalently,
anxn—m
P——B=Q1B+ R;.
bm

After rearranging, we obtain

P:G%+%§)B+RL

n—m

Setting @ = Q1 + “»3— and R = Ry we obtain
P=QB+R

and deg R < deg B as desired. This shows that the decomposition exists for all
polynomials P of degree n. By the induction principle, the statement is true for
all natural numbers n.



Bonus problem. Let S = [0,1,2,...,999]* and let f : S — R be defined by
f(n1,n2,n3) = n1 + n2v/2 + n3v/3. The range of f is contained in the interval
[0,4147], and hence when it is broken into consecutive half-open intervals of
length 4.2 x 1076, there are fewer than 10° such intervals. By the pigeonhole
principle, two elements of S say (m1,ma,mg) # (mf, mh, m5) map to the same
interval. Observe that n; = m; —m}, ng = mgy — mh, ng = ms — mf are not all
zero and satisfy |ni|, |nal, |n3| < 1000 and

ny + nav2 + n3v3| < 4.2 x 1076,



