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Problem 1. Rational numbers form a field, so in particular they are closed
under addition and multiplication. Thus, if x and x + y are rational, so is
y = (x + y) − x. Likewise, if x and xy are rational and x 6= 0, then so is
y = (xy)x−1.

Problem 2. (Recall the definition of a Dedekind cut from Lecture 3, slide 10.)
It is obvious that α+β is not empty because the same is true for α and β. Every
Dedekind cut is bounded above (since otherwise it would be all of Q) so there
are rational numbers M and N such that for all x ∈ α we have x ≤ M and for
all y ∈ β we have y ≤ N . We conclude that x+y ≤M +N . It follows that α+β
is bounded above so α+ β 6= Q. This proves that the first axiom is satisfied. To
check the second axiom, suppose that x ∈ α, y ∈ β and q is a rational number
satisfying q < x+ y. We have q−x < y which implies that q−x ∈ β since β is a
Dedekind cut. So q = x+(q−x) is the sum of an element of α and an element of
β and q ∈ α+ β, which proves that α+ β satisfies the second axiom. It remains
to prove that α+ β satisfies the third axiom. Again, let x ∈ α and y ∈ β. Then
there exist rx ∈ α and ry ∈ β such that x < rx and y < ry. The sum rx + ry is
then an element of α+ β such that x+ y < rx + ry, which shows that the third
axiom is satisfied. Therefore, α+ β is a Dedekind cut.

Problem 3. Suppose that y − x > 1. Let [x] be the largest integer satisfying
[x] ≤ x (prove that such an integer exist). Then x < [x]+1 and [x]+1 ≤ x+1 < y,
so [x] + 1 belongs to the open interval (x, y), which proves the first part of the
problem. Suppose now that x and y satisfy x < y. Since y − x > 0, there exists
a natural number m such that m(y − x) > 1 or equivalently my − mx > 1.
Applying the first part of the problem to the numbers my and mx, we see that
there is an integer n such that my > n > mx. Dividing all sides by m we obtain
y > n/m > x, which proves the second part of the problem. To prove the third
part, observe that the open interval (x, y) is an uncountable set. On the other
hand, rational numbers form a countable set. This means that there must exist
an irrational number z ∈ (x, y), which means that x < z < y.
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Problem 4. Denote φ = (1 +
√

5)/2. A direct calculation shows that φ solves
the quadratic equation 1 + φ = φ2. We prove the statement by (generalised)
induction with respect to n. For n = 2 we have F2 = 1 < φ because

√
5 > 1.

Suppose that the statement is true for all natural numbers smaller than or equal
to some n ≥ 2. We want to conclude that it is true for n+ 1. By the induction
hypothesis

Fn+1 = Fn−1 + Fn ≤ φn−2 + φn−1 = φn−2(1 + φ) = φn,

which shows that the inequality holds for n + 1. By the induction principle, it
holds for all n ≥ 2.

Problem 5. Define T1 = 1 and, recursively, for n > 1, Tn = Sn \
⋃

1≤m<n Sm.
Then the sets Tn are countable and pairwise disjoint, and S =

⋃∞
n=1 Sn =⋃∞

n=1 Tn. Thus we may assume that the initial sets Sn were pairwise disjoint.
Since each of Sn is countable, there is an injective map fn : Sn → N for every

n. We construct a map F : S → N× N by

F (x) = (fn(x), n) for x ∈ Sn.

It is well-defined since S is the disjoint union of all Sn. The map is clearly
injective: if (fn(x), n) = (fm(y),m) for some natural numbers n,m and x ∈ S,
y ∈ S, then we have n = m, which shows that both x and y are elements of the
same set Sn, and fn(x) = fn(y), which shows that x = y since fn is injective. To
sum up, we have constructed an injective map from S to N × N. On the other
hand, there is an injection N× N→ N given by

g(m,n) = 2m3n.

The injectivity of g follows from the fact that the prime decomposition of a
natural number is unique. Thus, the composition g ◦ f gives an injective map
from S to N, proving that S is countable.

Problem 6. First, we show that the decomposition, if exists, is unique. Sup-
pose that we have another pair of polynomials Q1 and R1 satisfying degR <
degB and

QB +R = P = Q1B +R1.

Then
(Q−Q1)B = R1 −R.

The polynomial on the right-hand side is of degree strictly smaller than degB.
On the other hand, the polynomial on the right-hand side has degree deg(Q −
Q1) + degB. So we have

deg(Q−Q1) + degB = deg(R1 −R) < degB,
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which can happen only if deg(Q−Q1) < 0 and so Q−Q1 = 0. This shows that
Q = Q1 and R = R1. This shows uniqueness of the decomposition.

It remains to prove that such Q and R exist. We prove it by (generalised)
induction with respect to the degree n = degP . Denote m = degB. The
statement clearly holds when n < m, in which case we take Q = 0 and R = P .
This proves the first inductive step. Suppose that the statement holds for all
natural numbers smaller than some n ≥ m. We want to conclude that it also
holds for n. Write

P (x) = a0 + a1x+ · · ·+ anx
n, an 6= 0,

B(x) = b0 + b1x+ · · ·+ bmx
m, bm 6= 0.

Consider the polynomial

P1(x) = P (x)− anx
n−m

bm
B(x).

(Note that we are using here the assumption that n ≥ m.) The degree of P1 is
at most n. However, the coefficient in front of the power xn in P1(x) is

an −
an
bm
bm = 0,

which shows that degP1 < n. By the induction hypothesis, there are polynomials
Q1 and R1 such that degR1 < degB and

P1 = Q1B +R1.

Equivalently,

P − anx
n−m

bm
B = Q1B +R1.

After rearranging, we obtain

P =

(
Q1 +

anx
n−m

bm

)
B +R1.

Setting Q = Q1 + anxn−m

bm
and R = R1 we obtain

P = QB +R

and degR < degB as desired. This shows that the decomposition exists for all
polynomials P of degree n. By the induction principle, the statement is true for
all natural numbers n.
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Bonus problem. Let S = [0, 1, 2, ..., 999]3 and let f : S → R be defined by
f(n1, n2, n3) = n1 + n2

√
2 + n3

√
3. The range of f is contained in the interval

[0, 4147], and hence when it is broken into consecutive half-open intervals of
length 4.2 × 10−6, there are fewer than 109 such intervals. By the pigeonhole
principle, two elements of S say (m1,m2,m3) 6= (m′1,m

′
2,m

′
3) map to the same

interval. Observe that n1 = m1 −m′1, n2 = m2 −m′2, n3 = m3 −m′3 are not all
zero and satisfy |n1|, |n2|, |n3| < 1000 and∣∣∣n1 + n2

√
2 + n3

√
3
∣∣∣ < 4.2× 10−6.
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