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Problem 1. Let n be a positive integer satisfying x ∈ [nπ, (n+ 1)π). Write∫ x

0

sin t

1 + t
dt =

n−1∑
k=0

∫ k+1

k

sin t

1 + t
dt+

∫ x

n

sin t

1 + t
dt.

Observe that sin is positive on the intervals of the form (2kπ, (2k + 1)π) and negative on
the intervals of the form ((2k − 1)π, 2kπ). In the sum above, consider the sum of two
consecutive terms: ∫ (2k+1)π

2kπ

sin t

1 + t
dt+

∫ (2k+2)π

(2k+1)π

sin t

1 + t
dt.

Integrating by substitution, we obtain the sum∫ π

0

{
sin(u+ 2kπ)

1 + 2kπ + u
+

sin(u+ 2(k + 1)π)

1 + (2k + 1)π + u

}
du

=

∫ π

0
sinu

{
1

1 + 2kπ + u
− 1

1 + (2k + 1)π + u

}
du > 0,

where we have used that sin(u+2kπ) = sinu and sin(u+(2k+1)π) = − sinu. This shows
that the sum of every consecutive terms is positive and so the integral is positive. We also
have to deal with the last term (the integral from n to x). If n is even, then this integral
is positive. If n is odd, then this integral can be paired with the previous term which is
positive and the calculation above shows that their sum is positive.

Problem 2. We have
ex = Pn(x) +Qn(x)

where

Qn(x) =

∞∑
k=2n+1

xk

k!
.

Note that this power series is absolutely convergent on (−∞,∞). Observe that Pn is an
even degree polynomial and so limx→±∞ Pn(x) = ∞. Since Pn is a continuous function,
this shows that Pn must achieve its global minimum at some point, x0 say. At x0 we have

0 = P ′n(x0) = ex0 −Q′n(x0) = ex0 −
∞∑

k=(2n+1)

k
xk−10

k!
= ex0 −

∞∑
k=2n

xk0
k!
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or equivalently

ex0 =
∞∑

k=2n

xk0
k!
.

Using this relation, we compute the value of Pn at x0:

Pn(x0) = ex0 −Qn(x0) =
∞∑

k=2n

xk0
k!
−

∞∑
k=2n+1

xk0
k!

=
x2n0

(2n)!
.

In particular, we see that x0 6= 0 because Pn(0) = 1. Thus, the right-hand side is strictly
positive. Since the value of Pn at its global minimum is positive, we see that Pn(x) > 0
for all x ∈ (−∞,∞).

Problem 3. Let us discuss only the third example as the other ones are similar. Suppose
that we have a solution of the form y =

∑
k akx

k, where the series converges absolutely.
Then

y′ =
∞∑
k=1

kakx
k−1,

y′′ =

∞∑
k=2

k(k − 1)akx
k−2.

The equation y′′ + xy′ + y = 0 is equivalent to

∞∑
k=2

k(k − 1)akx
k−2 +

∞∑
k=1

kakx
k +

∞∑
k=0

akx
k = 0.

or after renumbering,

∞∑
k=0

(k + 2)(k + 1)ak+2x
k +

∞∑
k=1

kakx
k +

∞∑
k=0

akx
k = 0.

Comparing the coefficients next to the powers of x, we obtain the relation 2a2 + a0 = 0
and for k = 1, 2, . . .

(k + 2)ak+2 + ak = 0.

This shows that a0 and a1 can be chosen arbitrarily and the remaining coefficients are

a2k = (−1)k
a0

2 · 4 · · · (2k)
,

a2k+1 = (−1)k
a1

3 · 5 · · · (2k + 1)
.

Using the ratio test we easily see that for any choice of a0 and a1 the radius of convergence
of such a power series is infinite and so y =

∑
k akx

k indeed defines an analytic function
solving the given differential equation.
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Problem 4. Let s be the square signal from Lecture 23, page 37. We know that the
Fourier series of s is

s(x) ∼ −2i

π

∑
n odd

1

n
e2πinx

and Parseval’s identity gives us ζ(2). By the convolution formula, the Fourier coefficients
of the convolution s ∗ s are squares of the Fourier coefficients of s:

s ∗ s ∼ − 4

π2

∑
n odd

1

n2
e2πinx.

Applying Parseval’s identity,∫ 1

0
(s ∗ s)2(x)dx =

16

π4

∑
n odd

1

n4
=

32

π4

∑
n>0 odd

1

n4
.

As in the proof from Lecture 23, we have

ζ(4) =

∞∑
n=1

1

n4
=

∑
n>0 odd

1

n4

(
1 +

1

24
+

1

28
+ · · ·

)
=

∑
n>0 odd

1

n4

(
1

1− 2−4

)
=

16

15

∑
n>0 odd

1

n4
.

In order to determine ζ(4) it remains to find the integral of (s ∗ s)2. We have

(s ∗ s)(x) =

∫ 1

0
s(t)s(x− t)dt =

∫ 1/2

0
s(t)s(x− t)dt+

∫ 1

1/2
s(t)s(x− t)dt

=

∫ 1/2

0
s(x− t)dt−

∫ 1

1/2
s(x− t)dt =

∫ x

x−1/2
s(u)du−

∫ x+1/2

x
s(u)du

= 2

∫ x

x−1/2
s(u)du.

where we have used that s is 1-periodic and the integral of s over any interval of length 1
is zero. We easily compute the last integral and obtain:

(s ∗ s)(x) =

{
4x− 1 for x ∈ [0, 1/2),
−4x+ 3 for x ∈ [1/2, 1].

Thus, ∫ 1

0
(s ∗ s)2(x)dx =

∫ 1/2

0
(4x− 1)2dx+

∫ 1

1/2
(−4x+ 3)2dx =

1

6
+

1

6
=

1

3
.

We conclude that

1

3
=

∫ 1

0
(s ∗ s)2(x)dx =

32

π4

∑
n>0 odd

1

n4
=

15

16
· 32

π4
ζ(4) =

30

π4
ζ(4)

and as a consequence ζ(4) = π4/90.

Problem 5. You can find many different proofs in this very nice Wikipedia article:

https://en.wikipedia.org/wiki/Divergence_of_the_sum_of_the_reciprocals_of_the_primes
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