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Problem 1. (1) and (3) are telescoping series, (2) and (4) are geometric series. To prove
that (4) converges we use the identity

√
a−
√
b

a− b
=

1
√
a +
√
b
,

so that the n-th term of the series (4) is

1

(
√
n + 1 +

√
n)
√
n2 + n

.

The denominator satisfies the inequality

(
√
n + 1 +

√
n)
√
n2 + n > n3/2,

so
∞∑
n=1

1

(
√
n + 1 +

√
n)
√
n2 + n

<
∞∑
n=1

1

n3/2
<∞,

where we have used the comparison test and the fact that
∑

n 1/ns converges if and only
if s > 1 (which was proved in class using the integral test).

Problem 2. Let an be the n-th element of the sequence. We have a1 = 1 and

an+1 =
√

1 + an. (1)

Clearly all an are positive. Suppose that the limit a = limn→∞ an exists. Then passing to
the limit n→∞ in (1) and using the continuity of x 7→

√
1 + x we get

a =
√

1 + a

or equivalently
a2 − a− 1 = 0,

from which it follows that a = (1 +
√

5)/2 (the other root is negative). It remains to show
that an indeed converges. We do it by proving that it is bounded above and increasing.
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First, we show by induction by it is bounded above by a. Clearly a1 = 1 < a. Assume
that an < a. Then

a2n+1 = 1 + an < 1 + a = a2

so an+1 < a2 (since both numbers are positive) and by induction the statement is true for
all n. Now we show that the sequence is increasing. This is equivalent to showing that

0 < a2n+1 − a2n = 1 + an − a2n.

The function x 7→ 1 + x − x2 has root a and is positive on the interval [0, a]. Since we
have already shown that an ∈ [0, a], it follows that the inequality above is satisfied and
the sequence an is increasing. This finishes the proof.

Problem 3. Since the function x 7→ 1/x is decreasing on (0,∞) we have

1 +
1

2
+ · · ·+ 1

n
>

∫ n

1

dx

x
= log n.

(Draw the graph of x 7→ 1/x to see this. Compare also with the proof of the integral
test from Lecture 19.) As a consequence, an > 0 for all n, so the sequence in question is
bounded below. We will show now that it is also decreasing and then it follows that it
converges. Consider the difference of two consecutive terms

an+1 − an =
1

n + 1
− log(n + 1) + log(n) =

1

n + 1
− log

(
1 +

1

n

)
= f(n),

where

f(x) =
1

x + 1
− log

(
1 +

1

x

)
.

We claim that f(x) < 0 for all x positive. This implies that that an+1 < an and the
sequence is decreasing. The claim is easy to establish. First, a quick calculation shows
that f ′(x) > 0 for x positive, so f is increasing. On the other hand, limx→∞ f(x) = 0, so
we conclude that f(x) < 0 for all x positive, as desired.

Problem 4. The sequence can be defined inductively by a1 = 1/2 and an+1 = 1/(2+an).
Note that an > 0 for all n (easy induction). If the limit a = limn→∞ an exists, then passing
to n→∞ in the above recurrence relation (as we did in Problem 2) gives

a =
1

2 + a
,

which has a unique positive solution a =
√

2− 1. To justify passing to the limit, we show
in the same way as in Problem 2 that an is bounded below by a and decreasing.
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Problem 5. The sum of the numbers in every column is the same and equal to zero
because

1−
(

1

2
+

1

4
+

1

8
+ · · ·

)
= 0.

Therefore, if we first sum the columns and then the rows, we obtain the sum of zeroes,
which is zero. On the other hand, the sum of the numbers in the i-th row is equal to
−1/2i−1. Summing all these sums, we get

−1− 1

2
− 1

4
− · · · = −2.

Problem 6. Because of the periodicity of sin we can write the integral as an alternating
series ∫ ∞

π/2

sin(x)√
x

dx =
∞∑
n=1

(−1)n+1an,

where

an =

∫ (n+1)π/2

nπ/2

| sinx|
x

dx =

∫ π/2

0

| sinx|√
x + n

dx.

One easily checks that the sequence an is decreasing and converges to zero. Thus, by the
alternating series test, the sum

∑
n(−1)n+1an converges.
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